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Talking about nuclear correlations

Whole is different from the
sum of the “parts”
“Parts” can be effective
degrees of freedom
In nuclei: “Parts” are
quasi-nucleons moving in a
mean-field potential
(SCHEME DEPENDENCE)

Comprehensive picture of nuclear SRC (A and isospin
dependence)?
How to forge links between nuclear-strucure theory (models)
and observables sensitive to nuclear SRC?
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STRATEGY (and OUTLINE of this presentation)

1 Develop an appropriate expansion for transition matrix
element between short-range correlated wave functions
(Low-order correlation operator approximation (LCA))

2 Apply it to the computation of nuclear momentum
distributions and find the driving physical mechanisms
[Compare results to those of “ab-initio” approaches]

3 Compute aggegrated effect of SRC as a function of A
[a2 data from A(e,e′)]

4 Compute isospin dependence of SRC
[A(e,e′pp)/A(e,e′pn) data]

5 Develop a proper reaction theory for SRC-sensitive
two-nucleon knockout

proper factorization properties of cross sections
[data for c.m. distributions of SRC pairs]
FSI corrections (elastic and charge-exchange)
A(e,e′NN) for N & Z and p(A,pNNA− 2) for N > Z
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Nuclear transition matrix elements with SRC (I)

Shift complexity from wave functions to operators

| Ψ〉 =
1√
N
Ĝ | Φ〉 with, N ≡ 〈Φ | Ĝ†Ĝ | Φ〉

| Φ〉 is an IPM single Slater determinant
Nuclear SRC correlation operator Ĝ

Ĝ ≈ Ŝ

 A∏
i<j=1

[
1 + l̂ (i, j)

] ,

Major source of correlations: central (Jastrow), tensor and
spin-isospin (universal dependent on rij)

l̂ (i, j) = −gc(rij) + ftτ (rij)Ŝij~τi · ~τj .+ fστ (rij)~σi · ~σj~τi · ~τj
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Nuclear transition matrix elements with SRC (II)

Turn expectation values between correlated states Ψ into
expectation values between uncorrelated states Φ

〈Ψ | Ω̂ | Ψ〉 =
1
N 〈Φ | Ω̂eff | Φ〉

“Conservation Law of Misery”: Ω̂eff is an A-body operator

Ω̂eff = Ĝ† Ω̂ Ĝ =
( A∑

i<j=1

[
1− l̂(i, j)

])†
Ω̂
( A∑

k<l=1

[
1− l̂(k , l)

])
Truncation procedure for short-distance phenomena

K. Wilson’s OPE: Ψ†(~R−
~r
2

)Ψ(~R+
~r
2

) ≈
∑

n

cn(~r)On(~R)
(
|~r |≈ 0

)
Low-order correlation operator approximation (LCA)

LCA: N-body operators receive SRC-induced (N + 1)-body
corrections
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Norm N ≡ 〈Φ | Ĝ†Ĝ | Φ〉: aggregated SRC effect

LCA expansion of the norm N

N = 1 +
2
A

∑
α<β

nas〈αβ | l̂†(1, 2) + l̂†(1, 2)̂l(1, 2) + l̂(1, 2) | αβ〉nas.

1 | αβ〉nas: normalized and anti-symmetrized two-nucleon
IPM-state

2
∑
α<β

extends over all IPM states | α〉 ≡| nαlαjαmjαtα〉,

(N − 1): measure for aggregated effect of SRC in g.s. of A
Aggregated quantitative effect of SRC in A relative to 2H

R2(A/2H) =
N (A)− 1
N (2H)− 1

=
measure for SRC effect in A
measure for SRC effect in 2H

.

Input to the calculations for R2(A/2H)
1 HO IPM states with ~ω = 45A−1/3 − 25A−2/3

2 A-independent universal correlation functions
[gc(r), ftτ (r), fστ (r)]
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a2(A/2H) from A(e,e′) at xB & 1.5 and R2(A/2H)
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Single-nucleon momentum distribution n[1](p)

Probability to find a nucleon with momentum p

n[1](p) =

∫
d2Ωp

(2π)3

∫
d3~r1 d3~r ′1 d3(A−1){~r2−A}e−i~p·(~r ′

1−~r1)

×Ψ∗(~r1,~r2−A)Ψ(~r ′1,~r2−A).

SRC-induced corrections to IPM n[1](p) are of two-body type
Normalization property

∫
dp p2n[1](p) = 1 can be preserved

p

β

α ~r ′
1 ~r1

β

α ~r ′
1 ~r1

β

α ~r ′
1 ~r1

β

α ~r ′
1 ~r1

(a) (b) (c) (d)

1

(a): IPM contribution (b)-(d): SRC contributions in LCA
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n[1](p) for A ≤ 12: LCA (Ghent) vs QMC (Argonne)

10−3

10−2

10−1

100

101

0 1 2 3 4

n
[1
] (
p
)

[f
m

3
]

p [fm−1]
0 1 2 3 4

p [fm−1]
0 1 2 3 4

p [fm−1]

4He Argonne
LCA

9Be Argonne
LCA

12C Argonne
LCA

QMC: PRC89(2014)024305 LCA: JPG42(2015)055104

1 p . pF = 1.25 fm−1: n[1](p) is “Gaussian” (IPM PART)
2 p & pF : n[1](p) has an “exponential” fat tail (CORRELATED

PART)
3 fat tail of n[1](p) in QMC and LCA are comparable

Jan Ryckebusch (Ghent University) SRC: data and models Rehovot, March 2017 9 / 31



n[1](k) in LCA: from light to heavy
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Major source of correlated strength in n[1](p)?
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Isospin dependence of SRC: pp, nn and pn

rN1N2
(p): relative contribution of (N1N2) pairs to n[1](p)
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Imbalanced strongly interacting Fermi systems

Reports 

/ http://www.sciencemag.org/content/early/recent / 16 October 2014 / Page 1 / 10.1126/science.1256785 

Many-body systems composed of interacting fermions are common in 

nature, ranging from high-temperature superconductors and Fermi liq-

uids to atomic nuclei, quark matter and 

neutron-stars. Particularly intriguing are 

systems that include a short-range in-

teraction that is strong between unlike 

fermions and weak between fermions of 

the same kind. Recent theoretical ad-

vances show that even though the un-

derlying interaction can be very 

different, these systems share several 

universal features (1–4). In all these 

systems, this interaction creates short-

range correlated (SRC) pairs of unlike 

fermions with a large relative momen-

tum (krel > kF) and a small center of 

mass (CM) momentum (ktot < kF), 

where kF is the Fermi momentum of the 

system. This pushes fermions from low 

momenta (k < kF where k is the fermion 

momentum) to high momenta (k > kF), 

creating a “high momentum tail.”

SRC pairs in atomic nuclei have 

been studied using many different reac-

tions, including pickup, stripping and 

electron and proton scattering. The 

results of these studies highlighted the 

importance of correlations in nuclei, 

which lead to a high momentum tail 

and decreased occupancy of low-lying 

nuclear states (5–13).

Recent experimental studies of bal-

anced (symmetric) interacting Fermi 

systems, with an equal number of fer-

mions of the two kinds, confirmed these 

predictions of a high momentum tail 

populated almost exclusively by pairs 

of unlike fermions (8–11, 14–16). 

These experiments were done using 

very different Fermi systems: protons 

and neutrons in atomic nuclei and two-

spin state ultra-cold atomic gasses. 

These systems span more than 15 or-

ders of magnitude in Fermi energy from 

106 to 10−9 eV and exhibit different 

short-range interactions [predominantly 

a strong tensor interaction in the nucle-

ar systems (8, 9, 17, 18), and a tunable 

Feshbach resonance in the atomic sys-

tem (14, 15)]. For cold atoms Ref. (1–

3) showed that the momentum density 

decreases as C/k4 for large k. The scale 

factor, C, is known as Tan’s contact and 

describes many properties of the system 

(4). Similar pairing of nucleons in nu-

clei with k > kF was also predicted in (19).

Here, we extend these previous studies to imbalanced (asymmetric) 
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The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the 

protons and neutrons did not interact, the Pauli exclusion principle would force the majority 

fermions (usually neutrons) to have a higher average momentum. Our high-energy electron 

scattering measurements using 
12

C, 
27

Al, 
56

Fe, and 
208

Pb targets show that, even in heavy neutron-

rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-

proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have 

momentum greater than the Fermi momentum. This finding has implications ranging from nuclear 

few body systems to neutron stars and may also be observable experimentally in two-spin state, 

ultra-cold atomic gas systems.
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Fig. 3. The extracted fractions of np (top) and pp 
(bottom) SRC pairs from the sum of pp and np pairs in 
nuclei. The green and yellow bands reflect 68% and 95% 
confidence levels, respectively (9). np-SRC pairs dominate 
over pp-SRC pairs in all measured nuclei. 

Fig. 2. Illustration of the CLAS detector with a reconstructed two-proton knockout event. For clarity, not all CLAS 
detectors and sectors are shown. The inset shows the reaction in which an incident electron scatters from a proton-proton pair 
via the exchange of a virtual photon. The human figure is shown for scale. 

LCA predicts that
≈90% of correlated
pairs is “pn”, and
≈5% is “pp”
(UNIVERSAL: A
independent)

Jan Ryckebusch (Ghent University) SRC: data and models Rehovot, March 2017 13 / 31



Predictions for 〈Tp〉 / 〈Tn〉 ratio
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Quantum numbers of SRC-susceptible IPM pairs?

n[1],corr stems from correlation operators acting on IPM
pairs. What are relative quantum numbers (nl) of those IPM pairs?
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Major source of SRC: correlations acting on (n = 0 l = 0) IPM pairs
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Relative two-nucleon momentum distribution in
LCA: tail is dominated by “3-body” SRC effects
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Relative two-nucleon momentum distribution in
LCA: tail is dominated by “3-body” SRC effects

Correlations through the mediation of a third particle:

H. FELDMEIER, W. HORIUCHI, T. NEFF, AND Y. SUZUKI PHYSICAL REVIEW C 84, 054003 (2011)
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FIG. 9. (Color online) Two-body densities ρrel
0,1(r) normalized to

1 fm−3 at r = 1 fm for different states (cf Fig. 5).

channels due to the nonvanishing angular momentum. It is

therefore surprising that we find in the exact wave function a

remarkable depopulation of the S = 0, T = 1 even channel

(2.572 pairs) obviously in favor of the S = 1, T = 1 odd

channel (0.428 pairs). As remarkable is the fact that the number

of pairs in the S = 1, T = 0 channel is essentially unchanged

(2.992 pairs) compared to the simple shell model picture. This

effect can not be understood in terms of two-body correlations,

as the parity of the relative motion of a nucleon pair can

not be changed by the two-body interaction. As already

discussed by Forest et al. [21] this effect should be attributed

to three-body correlations induced by the strong tensor force

in the S = 1, T = 0 channel. As total isospin T is a conserved

quantity in light nuclei the total number of pairs in the T = 0

and T = 1 channels has to be conserved. The tensor force in

the S = 1, T = 0 channel provides the dominant contribution

to the nuclear binding. It has its origin in the pion exchange and

is long ranged. Nucleon pairs in the S = 1, T = 0 channel will

therefore be correlated even at large distances and these tensor

correlations will affect other nucleon pairs. It is energetically

favorable to break a pair in the S = 0, T = 1 channel by

flipping the spin of a nucleon if this allows the tensor force

to gain energy in another pair involving a third nucleon. An

illustration of this mechanism is shown in Fig. 12 where energy
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FIG. 10. (Color online) Normalized two-body densities as a

function of relative momentum k for the S = 1, T = 0 channel.

Ground-state densities of 2H, 3H, 3He, 4He are denoted by d, t, h,

α, respectively. The excited state of 4He is labeled with α∗.
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FIG. 11. (Color online) The same as Fig. 10 but for the S = 0,

T = 1 channel as a function of k.

is gained by tensor correlations for a pair of nucleons in the

S = 1, T = 0 channel. In the uncorrelated case the nucleon

pair is assumed to be in a relative S-wave. In the correlated

many-body state the pair will be partially found in a relative D-

wave to allow for additional binding by the tensor force. This

D-wave admixture will also change the spin orientation of the

nucleons, so that another pair, originally in the S = 0, T = 1

channel, is now found in the S = 1, T = 1 channel.

To illustrate the effects of these three-body correlation on

the two-body densities in the T = 1 channel we show in Fig. 13

the two-body momentum distributions of the S = 0, T = 1

and the S = 1, T = 1 channels for 4He. At small relative

momenta the density in the odd channel vanishes because of

the P -wave nature. For momenta between 1.1 and 2.1 fm−1 the

two-body density in the S = 1, T = 1 is actually larger than

in the S = 0, T = 1 channel. At very high relative momenta

the contribution of the odd channel can again be neglected.

The three-body correlations therefore influence the two-body

density very differently in different momentum regimes. For

low relative momenta below about 0.5 fm−1 the effect is very

small and the two-body densities in the two even channels

FIG. 12. (Color online) Illustration of three-body correlations

induced by tensor correlations. In the uncorrelated wave function

(left) the two nucleons 1 and 2 are in an S = 1, MS = 0 pair with

L = 0. The tensor force leads to an admixture of an L = 2 component

and an alignment of the spins of nucleons 1 and 2 flipping the spin

of nucleon 2 (right). This affects the interaction between nucleon 2

and nucleon 3. In the uncorrelated wave function the protons 2 and

3 form an S = 0, T = 1, L = 0 pair. After the spin-flip of nucleon 2

this becomes an S = 1, T = 1, L = 1 pair.

054003-8

Feldmeier et al., PRC 84 (2011), 054003
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Nucleon knockout data and nuclear models (I)
The quasi-free one-nucleon knockout case

Link between A(e,e′N) cross section and single-nucleon
spectral function can be derived

d5σ

dε′dΩε′dΩNdEN
(e,e′N) = KσeNS (Em,pm)

Factorization is approximate: relativity, final state
interactions, spin effects, . . .

NUCLEAR STRUCTURE

Chapter 1. Introduction 3

Figure 1.1 – Diagrams depicting the one-body momentum distribution n(~k) (top) and the two-
body momentum distribution n(~k1,~k2) (bottom). The momentum distributions can be interpreted
as the probability of removing and adding a nucleon (nucleons) with momentum ~k (momenta
~k1,~k2). The correlated nuclear systems A,A − 1 and A − 2 are represented by the gray band.
Throughout this work the correlated wave functions are constructed by introducing a correlation
operator G acting on the IPM nucleons, represented with the individual lines.

with the probability of finding a single nucleon with a certain momentum in the interval
[~k,~k + d~k]. The two-body momentum distribution n(~k1, ~k2) denotes the joint probability

of simultaneously finding two nucleons with momenta [~k1, ~k1 + d~k1] and [~k2, ~k2 + d~k2]. In
the IPM, the two-body momentum distribution is given by the product of single-body
momentum distributions, n(~k1, ~k2) = n(~k1)n(~k2). A diagram depicting the nuclear one
and two-body momentum distribution is shown in Fig. 1.1. The correlated momentum
distributions are calculated by correlating the IPM wave function by means of a correlation
operator G.

The SRC or NMD are not directly observable and have to be probed in nuclear scatter-
ing reactions. In this dissertation we seek to extract information about nuclear SRC from
the analysis of measurements of exclusive electroinduced two-nucleon knockout reactions.
Thereby nucleons are knocked out of the nucleus by a hard electromagnetic interaction and
the energy and momentum of both outgoing nucleons is determined. These reactions are
ideal for the study of SRC. In chapter 3 the connection of SRC physics and two-nucleon
knockout reactions is discussed. The diagrams depicting one and two-nucleon knockout
reactions are depicted in Fig. 1.2. In scattering reactions the NMD are not probed di-
rectly. In the NMD description of Fig. 1.1 there is no time flow and hence no exchanged
energy. The only relevant quantity is the three-momentum of the nucleon(s). In scattering

A(e,e′p) OBSERVABLES
4 1.1. Introduction

Figure 1.2 – The electroinduced one (two) nucleon-knockout reactions is depicted. A probe
exchanges a virtual photon with energy ω and three-momentum ~q with the struck nucleon. The
hatched circles denote the photon (two-)nucleon coupling. The correlated nucleus is constructed
with the correlation operator G acting on the IPM nucleons.

reactions, where time flows and energy is exchanged, the corresponding quantity is called
the spectral function. The spectral function is connected to the probability of finding a
nucleon (nucleons) with a certain momentum and energy in the nucleus. It can be shown
that in single-nucleon knockout reactions the one-body spectral function can be connected
to the one-nucleon knockout cross section [21]. For the two-body spectral function and the
two-nucleon knockout cross section such a connection is not evident, if not impossible.

A central issue of this dissertation is how information about the energy and momentum of
the initial SRC nucleon pair can be recovered in the two-nucleon knockout reaction. It is
shown that under appropriate kinematical constraints, the exclusive two-nucleon knockout
cross section can be connected to the probability of finding a SRC pair with a certain
center-of-mass (c.m.) momentum. Thereby the information about the relative momentum
is inherently tied to the details of the photon two-nucleon interaction. It is not possible to
make a direct connection between the cross section and the relative-momentum probability
distribution of the SRC pair.

Final state interactions (FSI) have a large impact on measured cross sections for nuclear
knockout reactions. The FSI are the interactions of the knocked out nucleon(s) with the
recoiling nucleus. FSI cause a significant attenuation of the nuclear knockout cross section.
In order to extract SRC properties from measured cross sections, the data has to be corrected
for FSI. The modelling of the processes contained in the FSI poses a difficult problem. The
FSI can be kept under control by considering reactions whereby the recoiling nucleus is left
with little or no excitation energy.

The attenuation of the cross section can be connected to the nuclear transparency. The
nuclear transparency is a measure of the attenuation strength of the FSI. For very soft
FSI the recoiling nucleus is very transparent for the ejected nucleon(s) and the nuclear
transparency will be high. Strong FSI will make the recoiling nucleus appear very opaque
to the outgoing nucleon(s) and lead to a very low nuclear transparency. In Fig. 1.3 the
electroinduced two-nucleon knockout reaction is depicted. Details about the description
of the FSI and the electrodinduced two-nucleon knockout cross section can be found in
chapter 3 and appendices A, B.



Nucleon knockout data and nuclear models (II)

The quasi-free two-nucleon knockout case
Connection between SRC driven A(e,e′NN) observables
and high-momentum part of two-nucleon momentum
distribution?

NUCLEAR STRUCTURE

Chapter 1. Introduction 3

Figure 1.1 – Diagrams depicting the one-body momentum distribution n(~k) (top) and the two-
body momentum distribution n(~k1,~k2) (bottom). The momentum distributions can be interpreted
as the probability of removing and adding a nucleon (nucleons) with momentum ~k (momenta
~k1,~k2). The correlated nuclear systems A,A − 1 and A − 2 are represented by the gray band.
Throughout this work the correlated wave functions are constructed by introducing a correlation
operator G acting on the IPM nucleons, represented with the individual lines.

with the probability of finding a single nucleon with a certain momentum in the interval
[~k,~k + d~k]. The two-body momentum distribution n(~k1, ~k2) denotes the joint probability

of simultaneously finding two nucleons with momenta [~k1, ~k1 + d~k1] and [~k2, ~k2 + d~k2]. In
the IPM, the two-body momentum distribution is given by the product of single-body
momentum distributions, n(~k1, ~k2) = n(~k1)n(~k2). A diagram depicting the nuclear one
and two-body momentum distribution is shown in Fig. 1.1. The correlated momentum
distributions are calculated by correlating the IPM wave function by means of a correlation
operator G.

The SRC or NMD are not directly observable and have to be probed in nuclear scatter-
ing reactions. In this dissertation we seek to extract information about nuclear SRC from
the analysis of measurements of exclusive electroinduced two-nucleon knockout reactions.
Thereby nucleons are knocked out of the nucleus by a hard electromagnetic interaction and
the energy and momentum of both outgoing nucleons is determined. These reactions are
ideal for the study of SRC. In chapter 3 the connection of SRC physics and two-nucleon
knockout reactions is discussed. The diagrams depicting one and two-nucleon knockout
reactions are depicted in Fig. 1.2. In scattering reactions the NMD are not probed di-
rectly. In the NMD description of Fig. 1.1 there is no time flow and hence no exchanged
energy. The only relevant quantity is the three-momentum of the nucleon(s). In scattering

Two-nucleon momentum
distribution

A(e,e′NN) OBSERVABLES
4 1.1. Introduction

Figure 1.2 – The electroinduced one (two) nucleon-knockout reactions is depicted. A probe
exchanges a virtual photon with energy ω and three-momentum ~q with the struck nucleon. The
hatched circles denote the photon (two-)nucleon coupling. The correlated nucleus is constructed
with the correlation operator G acting on the IPM nucleons.

reactions, where time flows and energy is exchanged, the corresponding quantity is called
the spectral function. The spectral function is connected to the probability of finding a
nucleon (nucleons) with a certain momentum and energy in the nucleus. It can be shown
that in single-nucleon knockout reactions the one-body spectral function can be connected
to the one-nucleon knockout cross section [21]. For the two-body spectral function and the
two-nucleon knockout cross section such a connection is not evident, if not impossible.

A central issue of this dissertation is how information about the energy and momentum of
the initial SRC nucleon pair can be recovered in the two-nucleon knockout reaction. It is
shown that under appropriate kinematical constraints, the exclusive two-nucleon knockout
cross section can be connected to the probability of finding a SRC pair with a certain
center-of-mass (c.m.) momentum. Thereby the information about the relative momentum
is inherently tied to the details of the photon two-nucleon interaction. It is not possible to
make a direct connection between the cross section and the relative-momentum probability
distribution of the SRC pair.

Final state interactions (FSI) have a large impact on measured cross sections for nuclear
knockout reactions. The FSI are the interactions of the knocked out nucleon(s) with the
recoiling nucleus. FSI cause a significant attenuation of the nuclear knockout cross section.
In order to extract SRC properties from measured cross sections, the data has to be corrected
for FSI. The modelling of the processes contained in the FSI poses a difficult problem. The
FSI can be kept under control by considering reactions whereby the recoiling nucleus is left
with little or no excitation energy.

The attenuation of the cross section can be connected to the nuclear transparency. The
nuclear transparency is a measure of the attenuation strength of the FSI. For very soft
FSI the recoiling nucleus is very transparent for the ejected nucleon(s) and the nuclear
transparency will be high. Strong FSI will make the recoiling nucleus appear very opaque
to the outgoing nucleon(s) and lead to a very low nuclear transparency. In Fig. 1.3 the
electroinduced two-nucleon knockout reaction is depicted. Details about the description
of the FSI and the electrodinduced two-nucleon knockout cross section can be found in
chapter 3 and appendices A, B.

Measurements with specific
kinematic cuts

Jan Ryckebusch (Ghent University) SRC: data and models Rehovot, March 2017 18 / 31



Nucleon knockout data and nuclear models (II)

The quasi-free two-nucleon knockout case
Connection between SRC driven A(e,e′NN) observables
and high-momentum part of two-nucleon momentum
distribution?

NUCLEAR STRUCTURE
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Figure 1.1 – Diagrams depicting the one-body momentum distribution n(~k) (top) and the two-
body momentum distribution n(~k1,~k2) (bottom). The momentum distributions can be interpreted
as the probability of removing and adding a nucleon (nucleons) with momentum ~k (momenta
~k1,~k2). The correlated nuclear systems A,A − 1 and A − 2 are represented by the gray band.
Throughout this work the correlated wave functions are constructed by introducing a correlation
operator G acting on the IPM nucleons, represented with the individual lines.

with the probability of finding a single nucleon with a certain momentum in the interval
[~k,~k + d~k]. The two-body momentum distribution n(~k1, ~k2) denotes the joint probability

of simultaneously finding two nucleons with momenta [~k1, ~k1 + d~k1] and [~k2, ~k2 + d~k2]. In
the IPM, the two-body momentum distribution is given by the product of single-body
momentum distributions, n(~k1, ~k2) = n(~k1)n(~k2). A diagram depicting the nuclear one
and two-body momentum distribution is shown in Fig. 1.1. The correlated momentum
distributions are calculated by correlating the IPM wave function by means of a correlation
operator G.

The SRC or NMD are not directly observable and have to be probed in nuclear scatter-
ing reactions. In this dissertation we seek to extract information about nuclear SRC from
the analysis of measurements of exclusive electroinduced two-nucleon knockout reactions.
Thereby nucleons are knocked out of the nucleus by a hard electromagnetic interaction and
the energy and momentum of both outgoing nucleons is determined. These reactions are
ideal for the study of SRC. In chapter 3 the connection of SRC physics and two-nucleon
knockout reactions is discussed. The diagrams depicting one and two-nucleon knockout
reactions are depicted in Fig. 1.2. In scattering reactions the NMD are not probed di-
rectly. In the NMD description of Fig. 1.1 there is no time flow and hence no exchanged
energy. The only relevant quantity is the three-momentum of the nucleon(s). In scattering
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Figure 1.2 – The electroinduced one (two) nucleon-knockout reactions is depicted. A probe
exchanges a virtual photon with energy ω and three-momentum ~q with the struck nucleon. The
hatched circles denote the photon (two-)nucleon coupling. The correlated nucleus is constructed
with the correlation operator G acting on the IPM nucleons.

reactions, where time flows and energy is exchanged, the corresponding quantity is called
the spectral function. The spectral function is connected to the probability of finding a
nucleon (nucleons) with a certain momentum and energy in the nucleus. It can be shown
that in single-nucleon knockout reactions the one-body spectral function can be connected
to the one-nucleon knockout cross section [21]. For the two-body spectral function and the
two-nucleon knockout cross section such a connection is not evident, if not impossible.

A central issue of this dissertation is how information about the energy and momentum of
the initial SRC nucleon pair can be recovered in the two-nucleon knockout reaction. It is
shown that under appropriate kinematical constraints, the exclusive two-nucleon knockout
cross section can be connected to the probability of finding a SRC pair with a certain
center-of-mass (c.m.) momentum. Thereby the information about the relative momentum
is inherently tied to the details of the photon two-nucleon interaction. It is not possible to
make a direct connection between the cross section and the relative-momentum probability
distribution of the SRC pair.

Final state interactions (FSI) have a large impact on measured cross sections for nuclear
knockout reactions. The FSI are the interactions of the knocked out nucleon(s) with the
recoiling nucleus. FSI cause a significant attenuation of the nuclear knockout cross section.
In order to extract SRC properties from measured cross sections, the data has to be corrected
for FSI. The modelling of the processes contained in the FSI poses a difficult problem. The
FSI can be kept under control by considering reactions whereby the recoiling nucleus is left
with little or no excitation energy.

The attenuation of the cross section can be connected to the nuclear transparency. The
nuclear transparency is a measure of the attenuation strength of the FSI. For very soft
FSI the recoiling nucleus is very transparent for the ejected nucleon(s) and the nuclear
transparency will be high. Strong FSI will make the recoiling nucleus appear very opaque
to the outgoing nucleon(s) and lead to a very low nuclear transparency. In Fig. 1.3 the
electroinduced two-nucleon knockout reaction is depicted. Details about the description
of the FSI and the electrodinduced two-nucleon knockout cross section can be found in
chapter 3 and appendices A, B.
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Exclusive SRC-driven A(e,e′NN) (I)

SRC-prone IPM pairs: close-proximity (n12 = 0, l12 = 0) state
The EXCLUSIVE A(e,e′NN) cross sections can be factorized[
PLB383,1 ; PRC89,024603 ; PRC96,034608

]

ZRA: Zero-range approximation
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Exclusive SRC-driven A(e,e′NN) (II)

1 A(e,e′NN) cross section factorizes according to

d8σ

dε′dΩε′dΩ1dΩ2dTp2

(e,e′NN) = KσeNN (k+, k−,q)F (D) (P)

F (D) (P): FSI corrected conditional probability to find a
dinucleon with c.m. momentum P in a relative
(n12 = 0, l12 = 0) state

2 A dependence of the A(e,e′pp) cross sections is soft
(much softer than predicted by naive Z(Z − 1) counting)

A(e,e′pp)
12C(e,e′pp)

≈ Npp(A)

Npp
(

12C
) × ( TA(e,e′p)

T12C(e,e′p)

)1−2

3 C.m. width of SRC susceptible pairs is “large” (in p-space)
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Factorization of the A(e,e′pp) cross sections
12C(e,e′pp) @ MAMI (Mainz) (Physics Letters B 421 (1998) 71.)

For P . 0.5 GeV c.m. motion of correlated pairs in 12C is mean-field
like

(
exp −P2

2σ2
c.m

)
! Data prove the proposed factorization in terms of

F (D)(P).
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Effect of FSI on factorization of A(e,e′pN) c.s.?

A(e,e′pp) A(e,e′pn)

Results: FSI & distorted c.m.-momentum distribution

The inclusion of FSI cause a large attenuation of the c.m.-momentum

distribution but leave its shape almost unaffected.
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Camille Colle (Ghent University) Hunting for nuclear short-range correlations March 2017 11

Jan Ryckebusch (Ghent University) SRC: data and models Rehovot, March 2017 22 / 31



A(e,e′NN): Effect of the final-state interactions?

Opening-angle distribution of 4He(e,e′pp)
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1 FSI (eikonal model) reduces the cross sections
2 FSI marginally affects the angular distributions

(FSI preserves factorization properties)
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C.m. motion of correlated pp pairs
COLLE, COSYN, RYCKEBUSCH, AND VANHALST PHYSICAL REVIEW C 89, 024603 (2014)
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FIG. 1. (Color online) The momentum dependence of the com-

puted n2n+l
2 (k12), nTBC

2 (k12), and nIPM
2 (k12) for 56Fe in a HO basis.

In order to quantify the effect of SRC we have used the gc (r12) of

Ref. [33] and the ftτ (r12), fστ (r12) of Ref. [28].

δ( �Pij − (�ki + �kj )) and δ(�kij −
�ki−�kj

2
). As the ≀̂ involves only

relative coordinates, the P2(P12) is not affected by the SRC

corrections in the TBC approximation. We define nIPM
2 (k12)

as the IPM contribution of n2(k12) and nTBC
2 (k12) the result

obtained with Eq. (23). Accordingly, nTBC
2 (k12) = nIPM

2 (k12) +
TBC corrections. For nTBC

2 (k12) the denominator 〈 �A|�A 〉
in Eq. (23) can be numerically computed by imposing

the normalization conditions:
∫

dk12n
TBC
2 (k12)k2

12 = 1. As in

Eqs. (7) and (17), one can introduce projection operators, and

select the contributions to nTBC
2 (k12) stemming from particular

quantum numbers (nl) of the relative two-nucleon wave

functions in �IPM
A . We define n2n+l

2 (k12) as the contribution

to nTBC
2 considering only (nl) configurations in �IPM

A with

constant 2n + l. Obviously, one has
∑

2n+l

n2n+l
2 (k12) = nTBC

2 (k12). (24)

The computed n2n+l
2 , nTBC

2 and nIPM
2 for 56Fe are shown in

Fig. 1. Below the Fermi momentum kF , the effect of the

correlation operator is negligible and nIPM
2 (k12) ≈ nTBC

2 (k12).

For k12 > kF , nIPM
2 (k12) drops rapidly while nTBC

2 (k12) exhibits

the SRC related high momentum tail. The tail is dominated by

the 2n + l = 0 configurations. This indicates that most of the

SRC are dynamically generated through the operation of the

correlation operators on nl = 00 IPM pairs.

In Sec. III, it is shown that in the limit of vanishing FSIs

the factorization function of the exclusive A(e,e′pN ) cross

section is P2(P12|nl = 00). In Figs. 2 and 3, we display the

computed P2(P12) and P2(P12|nl = 00) for the pp and pn

pairs in 12C, 27Al, 56Fe, and 208Pb. The relative weight of the

(nl = 00) in the total c.m. distribution decreases spectacularly

with increasing mass number A. This will reflect itself in the

mass dependence of the A(e,e′NN ) cross sections which are

predicted to scale much softer than A2. The (nl = 00) pairs are

strongly localized in space which enlarges the P2(P12|nl = 00)

width relative to the P2(P12) one. The mass dependence of the

normalized P2(P12) reflects itself in a modest growth of the

width of the distribution. For the light nuclei 12C and 27Al, the

pp and pn c.m. distributions look very similar.
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FIG. 2. The momentum dependence of P2(P12) and the

P2 (P12|nl = 00) for pp pairs in different nuclei. The adopted

normalization convention is that
∫ ∞

0
dP12 P 2

12P2(P12) = 1. Note that

only the pp contributions to P2(P12) are considered when performing

the integral. The results are obtained in a HO basis.

At first sight the computed P2(P12) for the pp and pn pairs

in Figs. 2 and 3 look very Gaussian. In what follows, we use

the moments to quantify the non-Gaussianity of the P2. The

first moment, or mean, of a distribution F (x) is defined as

µ1 = µ =

∫
D

xF (x)dx∫
D

F (x)dx
, (25)
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FIG. 3. As in Fig. 2 but for pn pairs.
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Width of c.m. distribution is a lever to discriminate between
SRC-prone and other IPM pairs [Erez Cohen’s talk]
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Mass dependence of the A(e,e′pp) cross sections

PREDICTION: A dependence of A(e,e′pp) c.s. is soft
(much softer than predicted by naive Z(Z − 1) counting)

A(e,e′pp)
12C(e,e′pp)

≈ Npp(A)

Npp
(

12C
) × ( TA(e,e′p)

T12C(e,e′p)

)1−2

 1

 10

 100

 10  100

A
(e

,e
′p

p
)/

 1
2
C

(e
,e

′p
p

) 

mass number A

l12=0+FSI

l12=1+FSI

l12=2+FSI

Jan Ryckebusch (Ghent University) SRC: data and models Rehovot, March 2017 25 / 31



Mass dependence of the A(e,e′pp) cross sections

PREDICTION: A dependence of A(e,e′pp) c.s. is soft
(much softer than predicted by naive Z(Z − 1) counting)

A(e,e′pp)
12C(e,e′pp)

≈ Npp(A)

Npp
(

12C
) × ( TA(e,e′p)

T12C(e,e′p)

)1−2

 1

 10

 100

 10  100

A
(e

,e
′p

p
)/

 1
2
C

(e
,e

′p
p

) 

mass number A

nl=00+FSI

l=1+FSI

l=2+FSI

CLAS Data compatible
with absorption on
SRC-prone
(n12 = 0, l12 = 0)
IPM pairs
PRC92, 024604
(2015)

Jan Ryckebusch (Ghent University) SRC: data and models Rehovot, March 2017 25 / 31



A dependence of number of pp and pn SRC pairs
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p(A,pNN A− 2) with radioactive beams

SRC in neutron-rich matter? Success of program hinges
on existence of a proper factorization expression for cross section.
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Figure 1. Pictorial diagram of a p(A, p′N1N2)[A − 2]∗ reaction in the IA and SA for properly

tuned kinematics. An accelerated ion A in the ground state (g.s.) scatters with a target proton

with four-momentum Pi, resulting in the knockout of a SRC-correlated nucleon pair with initial

relative and center of mass (c.m.) momenta P rel
12,i and P com

12,i , respectively. The ejected pair has

four-momentum P12,f , manifesting itself as two asymptotically free nucleons with asymptotic four-

momenta P1(E1, ~p1) and P2(E2, ~p2). The recoiling target proton has four-momentum Pf and a

residual nucleus A − 2 is created in a state denoted by α. Inset: The scattering of the SRC-

correlated nucleon pair (NN) with the target proton is treated as a free proton-proton scattering.

The ZRA assumes both nucleons in the pair to reside at the same interaction point at the moment

of scattering.

M1(Γ1) can thus be connected to the two-nucleon spectral function, which is related to the

joint probability F J M T MT
βγ (P cm

12,i, P
rel
12,i) of removing a SRC-correlated nucleon pair with initial

center of mass (c.m.) and relative four-momenta (P cm
12,i, P

rel
12,i) and finding the residual (A−2)

core in the α state. Reaction vertex Γ2 describes the interaction of the SRC-correlated pair

with the target proton resulting in a final channel where three asymptotically free nucleons

(p′, N1, N2) are observed.

4

Thomas Aumann’s talk
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CONCLUSIONS (I)

Nuclear SRC can be captured by general and rather robust
principles applicable to NMDs (models) and to 2N knockout
LCA: efficient and realistic way of computing the SRC
contributions to NMDs

1 Magnitude of EMC effect and A(e,e′)/D(e,e′) scaling factor
(xB & 1.5) can be predicted in LCA

2 A ≤ 12: LCA predictions for fat tails are in line with those of
QMC

3 LCA predictions for 〈TN〉 and radii are “realistic” (consistency
checks)

4 Natural explanation for the universal behavior of the NMD tails

MAJOR contribution to SRC strength: correlation operators
acting on IPM pairs in a nodeless relative S state
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CONCLUSIONS (II)

Insights from study of SRC contribution to NMD has
implications for SRC-driven A(e,e′NN)A− 2 and
p(A,pNN A− 2)

1 Scaling behavior of cross section (∼ F(P)) (CONFIRMED!)
2 Very soft mass dependence of cross section (CONFIRMED!)
3 Peculiar c.m. width of the SRC-susceptible pairs

(CONFIRMED!)

Generally applicable techniques for quantifying SRC:
two-body effects in neutrino reactions, role of SRC in exotic
forms of hadronic matter, . . .
SRC induced spatio-temporal fluctuations are measurable,
are significant and are quantifiable
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