Fluctuations and the QCD Critical Point

M. Stephanov

UIC

Outline

D QCD phase diagram, critical point and fluctuations

- Critical fluctuations and correlation length
- Non-gaussian moments and universality

Beam energy scan

- Mapping to QCD and observables
- Intriguing data from RHIC BES I
- Acceptance dependence

QCD Phase Diagram (a theorist's view)

Lattice at $\mu_B \lesssim 2T$

Critical point – a fundamental feature of QCD phase diagram and a major goal for H.I.C.

The key equation:

 $P(\sigma) \sim e^{S(\sigma)}$ (Einstein 1910)

The key equation:

$$P(\sigma) \sim e^{S(\sigma)}$$
 (Einstein 1910)

■ At the critical point $S(\sigma)$ "flattens". And $\chi \equiv \langle \sigma^2 \rangle / V \rightarrow \infty$.

CLT?

The key equation:

$$P(\sigma) \sim e^{S(\sigma)}$$
 (Einstein 1910)

■ At the critical point $S(\sigma)$ "flattens". And $\chi \equiv \langle \sigma^2 \rangle / V \rightarrow \infty$.

CLT? σ is not a sum of ∞ many *uncorrelated* contributions: $\xi \to \infty$

The key equation:

$$P(\sigma) \sim e^{S(\sigma)}$$
 (Einstein 1910)

• At the critical point $S(\sigma)$ "flattens". And $\chi \equiv \langle \sigma^2 \rangle / V \to \infty$.

CLT? σ is not a sum of ∞ many *uncorrelated* contributions: $\xi \to \infty$

Higher order cumulants

- Higher cumulants (shape of $P(\sigma)$) depend stronger on ξ . E.g., $\langle \sigma^2 \rangle \sim V \xi^2$ while $\langle \sigma^4 \rangle_c \sim V \xi^7$
- Higher moments also depend on which side of the CP we are.
 This dependence is also universal.
- Using Ising model variables:

System expands and is out of equilibrium

In this talk – *equilibrium* fluctuations. The only dynamical effect we consider is the one which makes ξ finite:

Critical slowing down. Universal scaling law:

$$\xi \sim au^{1/z},$$
 where $1/ au$ is expansion rate

and $z \approx 3$ (Son-MS).

Estimates: $\xi \sim 2 - 3$ fm (Berdnikov-Rajagopal, Asakawa-Nonaka).

Dynamical description of fluctuations is essential

and is work in progress.

Experiments do not measure σ .

Mapping to QCD and experimental observables

Observed fluctuations are not the same as σ , but related:

Think of a collective mode described by field σ such that $m = m(\sigma)$:

$$\delta n_{\boldsymbol{p}} = \delta n_{\boldsymbol{p}}^{\text{free}} + \frac{\partial \langle n_{\boldsymbol{p}} \rangle}{\partial \sigma} \times \boldsymbol{\delta \sigma}$$

The cumulants of multiplicity $M \equiv \int_{p} n_{p}$:

•
$$\kappa_4[M] = \underbrace{\langle M \rangle}_{\text{baseline}} + \underbrace{\kappa_4[\sigma] \times g^4}_{\sim M^4} \underbrace{\left(\bigoplus_{\sim M^4} \right)^4}_{\sim M^4} + \dots,$$

g – coupling of the critical mode ($g=dm/d\sigma$).

Mapping to QCD and experimental observables

Observed fluctuations are not the same as σ , but related:

Think of a collective mode described by field σ such that $m = m(\sigma)$:

$$\delta n_{\boldsymbol{p}} = \delta n_{\boldsymbol{p}}^{\text{free}} + \frac{\partial \langle n_{\boldsymbol{p}} \rangle}{\partial \sigma} \times \boldsymbol{\delta \sigma}$$

The cumulants of multiplicity $M \equiv \int_{p} n_{p}$:

•
$$\kappa_4[M] = \underbrace{\langle M \rangle}_{\text{baseline}} + \underbrace{\kappa_4[\sigma] \times g^4}_{\sim M^4} \underbrace{\left(\bigoplus_{\sim M^4} \right)^4}_{\sim M^4} + \dots,$$

g – coupling of the critical mode ($g = dm/d\sigma$).

• $\kappa_4[\sigma] < 0$ means $\kappa_4[M] < baseline$

Mapping to QCD and experimental observables

Observed fluctuations are not the same as σ , but related:

Think of a collective mode described by field σ such that $m = m(\sigma)$:

$$\delta n_{\boldsymbol{p}} = \delta n_{\boldsymbol{p}}^{\text{free}} + \frac{\partial \langle n_{\boldsymbol{p}} \rangle}{\partial \sigma} \times \boldsymbol{\delta \sigma}$$

The cumulants of multiplicity $M \equiv \int_{p} n_{p}$:

•
$$\kappa_4[M] = \underbrace{\langle M \rangle}_{\text{baseline}} + \underbrace{\kappa_4[\sigma]}_{\sim M^4} \times g^4 \underbrace{\left(\underbrace{\bullet}_{\sim M^4} \right)^4}_{\sim M^4} + \dots,$$

g – coupling of the critical mode ($g=dm/d\sigma$).

● NB: Sensitivity to M_{accepted} : $(\kappa_4)_{\sigma} \sim M^4$ (number of 4-tets).

QM2017 update: another intriguing hint

Preliminary, but very interesting:

Δφ "Ridge"

- Non-monotonous √s dependence with max near 19 GeV.
- Charge/isospin blind.
- $\Delta \phi$ (in)dependence is as expected from critical correlations.
- Width Δη suggests soft thermal pions – but p_T dependence need to be checked.
- But: no signal in R_2 for *K* or *p*.

Acceptance dependence

Correlations - spatial vs kinematic

$$\xi \sim 1 - 3 \, {\rm fm}$$

$$\Delta\eta_{\rm corr} = \frac{\xi}{\tau_{\rm f}} \sim 0.1 - 0.3$$

Particles within $\Delta \eta_{\rm corr}$ have thermal rapidity spread. Thus

$$\Delta y_{\rm corr} \sim 1 \gg \Delta \eta_{\rm corr}$$

Acceptance dependence - two regimes

How do cumulants depend on acceptance?

Let $\kappa_n(M)$ be a cumulant of M – multiplicity of *accepted*, say, protons.

•
$$\Delta y \gg \Delta y_{\text{corr}} - \text{CLT}$$
 applies.
 $\kappa_n \sim M$
or $\omega_n \equiv \frac{\kappa_n}{M} \rightarrow \text{const} - \text{an "intensive", or volume indep. measure}$

Acceptance dependence - two regimes

How do cumulants depend on acceptance?

Let $\kappa_n(M)$ be a cumulant of M – multiplicity of *accepted*, say, protons.

9
$$\Delta y \gg \Delta y_{\rm corr}$$
 – CLT applies.

$$\kappa_n \sim M$$

or $\omega_n \equiv \frac{\kappa_n}{M} \rightarrow \text{const}$ – an "intensive", or volume indep. measure

•
$$\Delta y \ll \Delta y_{\rm corr}$$
 – more typical in experiment.

Subtracting trivial (uncorrelated, Poisson) contribution:

 $\kappa_n - M \sim M^n$ – proportional to number of correlated *n*-plets;

or $\omega_n - 1 \sim M^{n-1}$.

Critical point fluctuations vs acceptance

Proton multiplicity cumulants ratio at 19.6 GeV: $\omega_{n,\sigma} \equiv \omega_n - 1$ grows as $(\Delta y)^{n-1}$ and saturates at $\Delta y \sim 1 - 2$.

 p_T and rapidity cuts have qualitatively similar effects.

Critical point fluctuations vs acceptance

Proton multiplicity cumulants ratio at 19.6 GeV: $\omega_{n,\sigma} \equiv \omega_n - 1$ grows as $(\Delta y)^{n-1}$ and saturates at $\Delta y \sim 1 - 2$.

 p_T and rapidity cuts have qualitatively similar effects.

Wider acceptance improves signal/error: errors grow slower than Mⁿ.

Concluding summary

- A fundamental question for Heavy-Ion collision experiments: Is there a critical point on the boundary between QGP and hadron gas phases?
- Intriguing data from RHIC BES I. Needed: better understanding. More data from BES II.
- Critical fluctuations have many universal properties.
- Characteristic non-monotonic \sqrt{s} dependence of fluctuations (with sign change for non-gaussian moments) a CP signature.
- Increase of signal with rapidity acceptance is characteristic of critical fluctuations.
- Dynamical description of fluctuations is essential and is work in progress.