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20% of nucleons in a nucleus belong to
short-range correlated pairs.
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20% of nucleons in a nucleus belong to
short-range correlated pairs.

Characteristics:
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Fermi gas In 3 box m 60-70% of kinetic energy
m Correlated partner

m High relative momentum
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We can probe SRC pairs with hard knock-outs.

Probe: €, p, ...
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We can probe SRC pairs with hard knock-outs.
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Example: high-resolution spectrometers

Jefferson Lab Hall A




Example: high-resolution spectrometers

Jefferson Lab Hall A




Example: large acceptance spectrometers
CLAS (Hall B)
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Early signs of short-range correlations
came from inclusive eA scattering.

Probe: €, p, y...

Measure: Kinematical variables:
Scattering angle Q% = —(pe — pL)? : resolution scale
Momentum xg = Q%/2m(E — E') : dynamic scale
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High-momentum nuclel can be selected
by restricting only the e~ kinematics.
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High-xg cross sections scale!
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Tagging a recoil ensures high momentum.

Probe: €, p, V...
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Tagging a recoil ensures high momentum.
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Probe: €, p, V...
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Without tagging, scaling starts at xg =~ 1.5.
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Recoll tagging can extend the scaling region!

N. Fomin et al., PRL 108 092502 (2012
Analysis by N. Muangma (Hall A
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Conclusions from inclusive scattering:
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Exclusive measurements show correlated pairs.

Probe: €, p, V...
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Correlated pairs are back-to-back.
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p scattering from Carbon:

m Always a correlated partner

m Anti-parallel momenta
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From k =~ 300-600 MeV/c, np pairs dominate.
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This has been verified over many nuclel.
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O. Hen et al, Science 346, 614 (2014)
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A quick recap
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m ~ 20% of nucleons have k > kr.
m Mom. distributions scale for large k.

m High-momentum nuclei have correlated
partner.

® The two momenta are back-to-back.

m 90% of pairs are neutron-proton.

23



An experimental overview of SRC pairs

The Past

m Previous experiments that tell us what we know
The Present

m Exciting recent developments
The Future

m What questions do we want to answer?

24



Three highlights from CLAS data mining

Center-of-mass momentum distributions of short-range pairs
m See talk by Erez Cohen!

The evolution of np dominance with momentum

Kinetic energy in asymmetric nuclei
m See talk by Meytal Duer!
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Only previous data are on ?C and “He.
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See talk by Erez Cohen.
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The C.M. width saturates for large A.
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See talk by Erez Cohen.
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The C.M. width saturates for large A.
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Also see talks by R. Weiss, R. Cruz Torres, C. Ciofi degli Atti
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np dominance comes from tensor interaction.

Scalar part of the NN interaction

Potential

Distance
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np dominance comes from tensor interaction.

Potential
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np dominance comes from tensor interaction.

Scalar part of the NN interaction

Scalar term takes over

. /\'\Tensor interaction dominates
Potential

Distance

We expect that the pp fraction should rise with nucleon momentum.
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The fraction of pp pairs increases with k.
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Analysis by E. Cohen, O. Hen et al.
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Which species has more kinetic energy

In an asymmetric nucleus?
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Which species has more kinetic energy

In an asymmetric nucleus?
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There are two competing forces.

T T
Majority Majority ———
Minority Minority ———
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Which is stronger?



The np dominance model makes a prediction.

Probability
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Analysis by Meytal Duer
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This suggests that the minority has more energy.
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See talks by Meytal Duer, Misak Sargsian, Jan Ryckebusch.
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Some remaining questions:

m How do short-range pairs evolve with A and (N — Z2)?
m What role do SRCs play in the EMC effect?
m What happens to the remnant nucleus after hard knockout?

m Are there three-N correlations?
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Two proposals to look at asymmetric nuclel

Tritium (e, €'p) CaFe Experiment
m Approved for JLab Hall A m Proposed for JLab Hall C
(E12-14-011) m Look at dependence on mass
m Isospin symmetry: 3H < 3He and neutron excess

m See F. Hauenstein, R. Cruz Torres  m #9Ca — 48Ca — %4Fe
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EMC Effect: nuclear medium changes quark
distributions.
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J. Gomez et al., Phys. Rev. D 49 4348 (1994)
J.R. Smith, G.R. Miller, Phys. Rev. C 65 055206 (2002)
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There is a curious SRC/EMC correlation.
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We will run two new experiments to investigate
the SRC-EMC connection.

DIS on deuterium, tagging a recoil nucleon.

Large-Angle Detector Backward-Angle Neutron Detector
(LAD) (BAND)
m Approved for JLab Hall C m Approved for JLab Hall B
m ¢ detected in Hall C m ¢ detected in CLAS-12
spectrometers spectrometer

For more on medium modifications, see talks by Gerry Miller
Larry Weinstein.
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We want to investigate SRCs with new probes.

Proposals:

Inverse kinematics at Dubna

m — detect remnant nucleus
m For related physics: see talk by Thomas Aumann

Protons at GSI

Photons at GlueX
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A new proton scattering experiment at GSI| will be
a high-statistics data set of SRC pairs.

m Proton scattering enhances
SRC cross section

m Use existing HADES,
NeuLAND detectors

m Chance to look at 3-nucleon
correlations

NeuLAND

Proton beam

See my colleague, George Laskaris
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Glue-X: study SRC pairs with real photons.

B Glue-X detector at JLab Hall D

m Study neutrons with charged
final states:

BYn— T p
m Tests of vector meson
dominance and transparency

See my colleague, Maria Patsyuk
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To recap:

m High momentum tail populated

I by short-range correlated pairs

High-momentum tail

Probability

|
ke 2ke 3ke
Nucleon momentum

48



To recap:

@) m High momentum tail populated
by short-range correlated pairs

m Directly measured with
coincidence experiments

Probe: €, p, Y...
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To recap:
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m High momentum tail populated
by short-range correlated pairs

m Directly measured with
coincidence experiments

m Highlights from CLAS data
mining
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To recap:

—— VMC+Contact
@ This Work
@ HallA

m High momentum tail populated
by short-range correlated pairs

m Directly measured with
coincidence experiments

m Highlights from CLAS data
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To recap:
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To recap:

05 ;

m High momentum tail populated
by short-range correlated pairs

m Directly measured with
coincidence experiments

m Highlights from CLAS data
mining

EMC Slope (—dR/dxg)

SRC-pair density (a)

m Remaining questions
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Conclusions

m Our consistent picture of short-range correlations has come from
many different probes and techniques.

m A diverse experimental program going forward is important for
making progress on tough remaining problems.
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