Heavy ion collisions at lower energies: challenges and opportunities Beam Energy Scan (BES I and II) from RHIC Lijuan Ruan (Brookhaven National Laboratory)

Outline:

- Introduction and Motivation
- Results from BES I
- Future perspectives with BES II
- Summary

a passion for discovery

03/28/17

Weizmann Institute of Science

Map out the phase diagram

- disappearance of QGP signatures (QGP turn off)
- first order phase transition
- critical point
- chiral symmetry restoration (not covered)

Particle spectra

Global quantities: T_{ch}, T_{kin}, μ_B, energy density, freeze-out volume... arXiv: 1701.07065

Freeze-out parameters

Energy density

From lattice, critical ε_c=0.34 ± 0.16 GeV/fm³: central lowest energy 7.7 GeV might be above transition region. A. Bazavov et al. (hotQCD) ,Phys. Rev. D90 (2014) 094503

03/28/17

Weizmann Institute of Science

QGP turn off: jet quenching

p_T range 3.0-3.5 GeV/c
 N_{bin} scaled particle yields as a function of N_{part}
 Interplay of
 Cronin effect, radial flow, coalescence
 Jet quenching

- At $\sqrt{sNN} > 14.5$ GeV/c, jet quenching has to be there
- At $\sqrt{sNN} < 14.5$ GeV/c, the jet quenching feature is gone but we can not rule out jet quenching.

QGP turn off: NCQ scaling and ϕ meson v₂

- NCQ scaling holds for particle and anti-particle separately.
- ϕ meson v₂, sensitive to QGP, close to zero with large uncertainty at $\sqrt{\text{sNN}} = 11.5$ GeV and below.

03/28/17

Weizmann Institute of Science

QGP turn off: particle and anti-particle v₂

 v_2 for particle is different from that for anti-particle at lower energies. Hadronic dynamics becomes more and more important at lower energies.

Hydro model: Hybrid model (UrQMD + hydro) with baryon stopping Nambu-Jona-Lasinio (NJL): Using vector mean-field potential, repulsive for quarks, attractive for anti-quarks 03/28/17 Weizmann Institute of Science

BROOKHAVEN Mapping the phase diagram: higher harmonics

Models show that higher harmonic ripples are sensitive to the presence of a QGP: v_3 goes away when the QGP goes away

In more central collisions, v_3 is present at the lowest energies, but disappears at lower energies for N_{part} <50 (turn-off of QGP)

When scaled by entropy density, v₃ shows a minimum near 15 GeV consistent with an increased bulk viscosity and decreased effective pressure 03/28/17 Weizmann Institute of Science

Non-monotonic behavior seen in net-proton v_1 slope as a function of collision energy. First order phase transition? softening of EOS? but not for net-kaon. 03/28/17 Weizmann Institute of Science

Softening of EOS: transverse mass or energy

Critical point: moments of net charge and net-kaon distributions

Moments of net proton distributions

Results sensitive to kinematic cuts (p_T range and rapidity range).

With Large acceptance, non-monotonic behavior is seen as a function of $\sqrt{s}NN.$

03/28/17

Weizmann Institute of Science

Moments of net proton distributions as a function of \sqrt{sNN}

HBT radii: finite-size scaling

 $R^2_{out}\mbox{-}R^2_{side}$ sensitive to the emission duration, shows a non-monotonic trend as a function of collision energy

Finite-size scaling analysis indicates a second order phase transition with $T^{cep} \sim 165$ MeV and $\mu^{cep}_{B} \sim 95$ MeV for the location of the critical end point. 03/28/17 Weizmann Institute of Science 15

What has been achieved from BES I

QGP turn off signatures

- jet quenching feature is gone for N_{bin} scaled particle yields as a function of N_{part} at $\sqrt{sNN} < 14.5$ GeV.
- ϕ meson v₂ ~ 0 at $\sqrt{s}NN=11.5$ and 7.7 GeV with large uncertainties.
- Higher harmonics $v_3 \sim 0$ at $N_{part} < 50$ at 7.7 GeV.

First order phase transition

- When scaled by entropy density, v₃ shows a minimum near 15 GeV consistent with an increased bulk viscosity and decreased effective pressure.
- Non-monotonic behavior seen in net-proton v_1 slope as a function of \sqrt{sNN} .
- Particle <m_T>-m₀ and transverse energy per particle show a flat pattern At √sNN > 8 GeV and increases again.

Critical point:

- Non-monotonic trend is seen in moments of net proton distributions in central Au+Au
 as a function of collision energy
- Non-monotonic trend is seen in the HBT radii as a function of collision energy

03/28/17

Towards BES II

In 2019 & 2020	E
7.7, 9.1, 11.5, 14.5 and 19.6 GeV	7
µв from 205 to 420 MeV	g
10~25 times more statistics	1
Detector upgrade	
- inner Time Projection Chambe	۶r

- Event Plane Detector
- endcap Time-Of-Flight

Low Energy Electron Cooling at RHIC

Collision Energies (GeV)	Proposed Event Goals (M)	BES I Event (M)
7.7	100	4
9.1	160	N/A
11.5	230	12
14.5	300	20
19.6	400	36

Upgrade plan for BES II

Image: Control of the second secon	endcap Time-Of-F	Fvent Plane Detector
iTPC upgrade	EPD upgrade	eTOF upgrade
Continuous pad rows Replace all inner TPC sectors	Replace Beam Beam Counter	Add CBM TOF modules and electronics (FAIR Phase 0)
η <1.5	2.1< η <5.1	-1.6<η<-1.1
p _T >60 MeV/c	Better trigger & b/g reduction	Extend forward PID capability
Better dE/dx resolution Better momentum resolution	Greatly improved Event Plane info (esp. 1 st -order EP)	Allows higher energy range of Fixed Target program
Fully operational in 2019	Fully operational in 2018	Fully operational in 2019
03/28/17	Weizmann Institute of Science	18

Net-proton cumulants in BES II with iTPC

Net-proton cumulants revealed a non-trivial energy dependence from BES I.

Measure as a function of Δy_p in a wide range is needed to establish true nature of correlation

iTPC upgrade will enable this measurement in a wider range

Fixed target program proposed during RHIC BES II will extend the energy down to $\sqrt{s_{NN}} = 3.0 \text{ GeV}$ ($\mu_B = 721 \text{ MeV}$)

The fixed target is outside the STAR TPC at 210 cm Only single beam is used $\sqrt{s_{NN}} = 3.0 \sim 7.7 \text{ GeV}$ ~100M events needed per energy

Spectra and flow from fixed target

Dedicated fixed-target run in 2015: $\sqrt{\text{sNN}}$ = 4.5 GeV

- 1 M events in 30 minutes!
- Excellent PID using dE/dx and ToF
- dN/dy and v₁ for charged particles and V0s are in good agreement with published results

Summary

Many interesting features have been observed for the signatures of

• QGP turn off

BROOKHA

- First-order phase transition
- Critical point

Turn the qualitative features to quantitative understandings.

- exciting results from the future BESII program
- BEST Theory Collaboration

Light nucleus production at BES I

The coalescence parameter B_2 is decreasing with energy and flattening out at about 20 GeV \rightarrow change in EOS?

Beam Energy Scan II in 2019-2020

RHIC is unique to study chiral symmetry restoration:

Beam energy scan II: collision energies 7.7, 9.1, 11.5, 14.5, 19.6 GeV.

Electron cooling from CAD will increase collision rate from 3-10. 03/28/17 Weizmann Institute of Science

BROOKHAVEN Physics impact for the detector upgrade in BES II

Low Energy Electron Cooling at RHIC:

Electron Cooling can raise the luminosity by a factor of 3-10 in the range from 5 - 20 GeV

Long Bunches increase luminosity by factor of 2-5

The upgrade for BES II will improve many of the STAR analyses

Better statistics Better resolution Smaller systematic uncertainty Wider rapidity range

Wider p_T coverage

Directed flow v₁ in BES II

The net proton v_1 slope at 11.5 GeV might indicate softening of EOS Possible signature of a 1st-order phase transition Softening would occur at different energies at forward rapidity

Weizmann Institute of Science