

CHIRAL SYMMETRY RESTORATION VERSUS DECONFINEMENT IN HEAVY-ION COLLISIONS

Pierre Moreau

for the PHSD group

STUDY OF HIGH-DENSITY NUCLEAR MATTER WITH HADRON BEAMS

Weizmann Institute of Science, Rehovot, Israel

Information from lattice QCD

Deconfinement phase transition with increasing temperature

Chiral symmetry restoration with increasing temperature

Scalar quark condensate $\langle \overline{q}q \rangle$ is viewed as an order parameter for the restoration of chiral symmetry:

$$<\bar{q}q>=\left\{ egin{array}{ll}
eq 0 & {
m chiral\ non-symmetric\ phase;} \\ =0 & {
m chiral\ symmetric\ phase.} \end{array}
ight.$$

Dynamical description of heavy-ion collisions

Pierre Moreau

- Goal: Study the properties of strongly interacting matter under extreme conditions from a microscopic point of view
- Realization: dynamical many-body transport approach

Parton-Hadron-String-Dynamics (PHSD)

- **Explicit parton-parton interactions, explicit phase** transiton from hadronic to partonic degrees of freedom
- Transport theory: off-shell transport equations in phase-space representation based on Kadanoff-Baym equations for the partonic and hadronic phase

W.Cassing, E.Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W.Cassing, EPJ ST 168 (2009) 3

Introduction

Dynamical Quasi-Particle Model (DQPM) 🗳

4 % [GeV]

The QGP phase is described in terms of interacting quasiparticles: quarks and gluons with Lorentzian spectral functions:

$$\rho_i(\omega,T) = \frac{4\omega\Gamma_i(T)}{(\omega^2 - \mathbf{p}^2 - M_i^2(T))^2 + 4\omega^2\Gamma_i^2(T)} \qquad (i = q, \bar{q}, g)$$

Properties of quasiparticles (large widths and masses) are fitted to the lattice QCD results

 ρ [GeV²]

light quark

 $T=2T_c$

DQPM provides mean-fields (1P1) for quarks and gluons as well as effective 2-body interactions (2P1)

Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365; NPA 793 (2007)

- **String formation in primary NN collisions**
- → decays to pre-hadrons (baryons and mesons)

- **String formation in primary NN collisions**
- → decays to pre-hadrons (baryons and mesons)

Formation of a QGP state if $\varepsilon > \varepsilon_{critical}$:

Dissolution of pre-hadrons → DQPM

→ massive quarks/gluons and mean-field energy

(quasi-)elastic collisions:

$$g+q \rightarrow g+q$$
 $g+q \rightarrow g+q$

$$g + \overline{q} \rightarrow g + \overline{q}$$
 $g + \overline{q} \rightarrow g + \overline{q}$

$$g+g \rightarrow g+g$$
 $g+g \rightarrow g+g$ $g \rightarrow g+g$ $g \rightarrow g+g$

inelastic collisions:

$$g + \overline{q} \rightarrow g + \overline{q}$$
 $g + \overline{q} \rightarrow g + \overline{q}$ $q + \overline{q} \rightarrow g + g$ $q + \overline{q} \rightarrow g + g$

$$\rightarrow g + g$$
 $g \rightarrow g + g$

Hadronic phase

Hadronization

Hadronic phase

- **String formation in primary NN collisions**
- → decays to pre-hadrons (baryons and mesons)

Formation of a QGP state if $\varepsilon > \varepsilon_{critical}$:

Dissolution of pre-hadrons → DQPM

→ massive quarks/gluons and mean-field energy

(quasi-)elastic collisions:

$$g+q \rightarrow g+q$$
 $g+q \rightarrow g+q$

$$g + \overline{q} \rightarrow g + \overline{q}$$
 $g + \overline{q} \rightarrow g + \overline{q}$

$$g+g \rightarrow g+g$$
 $g+g \rightarrow g+g$ $g \rightarrow g+g$ $g \rightarrow g+g$

inelastic collisions:

$$g + \overline{q} \rightarrow g + \overline{q}$$
 $g + \overline{q} \rightarrow g + \overline{q}$ $q + \overline{q} \rightarrow g + g$ $q + \overline{q} \rightarrow g + g$

$$\rightarrow g + g$$
 $g \rightarrow g + g$

Hadronization to colorless off-shell mesons and baryons

$$g \rightarrow q + \overline{q}$$
, $q + \overline{q} \leftrightarrow meson \ ('string')$
 $q + q + q \leftrightarrow baryon \ ('string')$

Strict 4-momentum and quantum number conservation

- Hadronization

Hadronic phase

- **String formation in primary NN collisions**
- → decays to pre-hadrons (baryons and mesons)

Formation of a QGP state if $\varepsilon > \varepsilon_{critical}$:

Dissolution of pre-hadrons → DQPM

→ massive quarks/gluons and mean-field energy

(quasi-)elastic collisions:

$$g+q \rightarrow g+q$$
 $g+q \rightarrow g+q$

$$g + \overline{q} \to g + \overline{q}$$
 $g + \overline{q} \to g + \overline{q}$

$$g+g \rightarrow g+g$$
 $g+g \rightarrow g+g$ $g \rightarrow g+g$ $g \rightarrow g+g$

inelastic collisions:

$$g + \overline{q} \rightarrow g + \overline{q}$$
 $g + \overline{q} \rightarrow g + \overline{q}$ $q + \overline{q} \rightarrow g + g$ $q + \overline{q} \rightarrow g + g$

$$g \to g + g$$
 $g \to g + g$

Hadronization to colorless off-shell mesons and baryons

$$g \rightarrow q + \overline{q}, \quad q + \overline{q} \leftrightarrow meson \ ('string')$$

 $q + q + q \leftrightarrow baryon \ ('string')$

Strict 4-momentum and quantum number conservation

Hadron-string interactions – off-shell HSD

t = 0.15 fm/c

Au+Au @ 35 AGeV

b = 2.2 fm - Section view

Quarks (0)

Gluons (0)

t = 2.55 fm/c

Au+Au @ 35 AGeV b = 2.2 fm - Section view

Quarks (54)

Gluons (0)

t = 5.25 fm/c

Au+Au @ 35 AGeV b = 2.2 fm - Section view

- Baryons (394)
- Antibaryons (0)
- Mesons (477)
- Quarks (282)
- Gluons (33)

t = 6.55001 fm/c

Au+Au @ 35 AGeV b = 2.2 fm - Section view

- Baryons (397)
- Antibaryons (3)
- Mesons (554)
- **Quarks** (199)
- Gluons (20)

t = 10.45 fm/c

Au+Au @ 35 AGeV b = 2.2 fm - Section view

- Baryons (399)
- Antibaryons (5)
- Mesons (745)
- Quarks (23)
- Gluons (3)

t = 13.55 fm/c

Au+Au @ 35 AGeV

b = 2.2 fm - Section view

- Baryons (399)
- Antibaryons (5)
- Mesons (817)
- Quarks (0)
- Gluons (0)

Au+Au @ 35 AGeV b = 2.2 fm - Section view

- Baryons (399)
- Antibaryons (5)
- Mesons (947)
- Quarks (0)
- Gluons (0)

Description of A+A with PHSD

PHSD provides a good description of 'bulk' observables (y-, p_Tdistributions, flow coefficients v_n) from SIS to LHC

Missing strangeness?

- Even considering the creation of a QGP phase, the strangeness enhancement seen experimentally by NA49 and STAR at ~ 20-30 AGeV collisions remains puzzling
 - 'Horn' not traced back to deconfinement

W. Cassing, A. Palmese, P. Moreau, E.L. Bratkovskaya - Phys.Rev. C93 (2016), 014902

Production of quarks by string decays

Initial state of heavy-ion collision:

- The 'flavor chemistry' of the final hadrons in the PHSD is mainly defined by the LUND string model
- According to the Schwinger formula, the probability to form a massive $s\bar{s}$ in a string-decay process is suppressed in comparison to light flavor $(u\overline{u}, d\overline{d})$

$$\frac{P(s\bar{s})}{P(u\bar{u})} = \frac{P(s\bar{s})}{P(d\bar{d})} = \gamma_s = \exp\left(-\pi \frac{m_s^2 - m_q^2}{2\kappa}\right)$$

 m_{s} , m_{q} (q=u, d) : constituent quark masses

 κ : string tension; in vaccum: $\kappa \sim 0.9$ GeV/fm

Dressing of quark masses

- m_s , m_q (q=u,d) constituent ('dressed') quark masses: 'dressing' of bare quark masses is due to the coupling to the scalar quark condensate $\langle \overline{q}q \rangle$
- In vacuum (V) (e.g. p+p collisions):

 $\gamma_S pprox 0.3$ with constituent quark masses : $m_q~(q=u,d) pprox 0.35$ GeV and $m_s pprox 0.5$ GeV

In medium (e.g. A+A collisions):

In the presence of a hot and dense medium, the constituent quark masses are modified

$$m_s^* = m_s^0 + (m_s^V - m_s^0) \frac{\langle \bar{q}q \rangle}{\langle \bar{q}q \rangle_V}$$

$$m_q^* = m_q^0 + (m_q^V - m_q^0) \frac{\langle \bar{q}q \rangle}{\langle \bar{q}q \rangle_V}$$

Gell-Mann-Oakes-Renner relation:

 $f_{\pi}^2 m_{\pi}^2 = -\frac{1}{2} \left(m_u^0 + m_d^0 \right) \langle \bar{q}q \rangle_V$

Bare quark masses:

 $m_u^0 = m_d^0 \approx 7 \text{ MeV}, m_s^0 \approx 100 \text{ MeV}$

The behavior of the scalar quark condensate $\langle \overline{q}q \rangle$ in the hadronic medium (baryons + mesons) can be obtained from: B.Friman et al... Eur, Phys, J, A 3, 165-170 (1998)

$$\frac{\langle \bar{q} \, q \rangle}{\langle \bar{q} \, q \rangle_V} = 1 \boxed{-\frac{\Sigma_\pi}{f_\pi^2 m_\pi^2} \rho_S} - \sum_h \frac{\sigma_h \rho_S^h}{f_\pi^2 m_\pi^2} \qquad \begin{array}{l} \text{Baryonic medium} \\ \text{Mesonic medium} \end{array}$$

Baryonic medium

 ρ_s : scalar density; $\Sigma_{\pi} \approx 45 \text{ MeV}$: pion-nucleon Σ -term; f_{π} and m_{π} : pion decay constant and pion mass

1) ρ_s is the scalar density of baryonic matter from the $\sigma - \omega$ model:

Scalar field $\sigma(x)$ mediates the scalar interaction of baryons with a g_s coupling. $\sigma(x)$ is determined locally by the nonlinear gap equation:

$$\begin{cases} m_{\sigma}^2 \sigma(x) + B \sigma^2(x) + C \sigma^3(x) = g_s \rho_S = g_s d \int \frac{d^3 p}{(2\pi)^3} \frac{m_N^*(x)}{\sqrt{p^2 + m_N^{*2}}} f_N(x, \mathbf{p}) \\ m_N^*(x) = m_N^V - g_s \sigma(x) \end{cases}$$
Parameters m_{σ} , g_s , B, C are fixed to reproduce

properties of nuclear matter at saturation

2) ρ_S^h is the scalar density of meson of type h (from PHSD)

Chiral symmetry restoration vs deconfinement

Results for strangeness in A+A

- Hadronic phase $\varepsilon < \varepsilon_c$: As a consequence of the chiral symmetry restoration (CSR), the strangeness production probability increases with the local energy density arepsilon
- **QGP** phase $\varepsilon > \varepsilon_c$: the string decay doesn't occur anymore and this effect is therefore suppressed.

Pb+Pb @ 30 AGeV - 0-5% central

Pb+Pb @ 30 AGeV - 0-5% central

Ratio of the quark scalar condensate compared to vacuum as a function of time ($y \approx 0$):

QGP phase depicted by the white contours

Pb+Pb @ 30 AGeV - 0-5% central

Pb+Pb @ 30 AGeV - 0-5% central

Pb+Pb @ 30 AGeV - 0-5% central

Au+Au @ 30 AGeV - 0-5% central

Chiral symmetry restoration leads to the enhancement of strangeness production during the string fragmentation in the beginning of HIC

Palmese et al..

PRC94 (2016) 044912, arXiv:1607.04073

Strange particle number Ns as a function of time

The strangeness enhancement seen experimentally at FAIR/NICA energies probably involves the approximate restoration of chiral symmetry in the hadronic phase

W. Cassing, A. Palmese, P. Moreau, E.L. Bratkovskaya - Phys.Rev. C93 (2016), 014902

The strangeness enhancement seen experimentally at FAIR/NICA energies probably involves the approximate restoration of chiral symmetry in the hadronic phase W. Cassing, A. Palmese, P. Moreau, E.L. Bratkovskaya - Phys.Rev. C93 (2016), 014902

Introduction

Results for strangeness in A+A

The strangeness enhancement seen experimentally at FAIR/NICA energies probably involves the approximate restoration of chiral symmetry in the hadronic phase W. Cassing, A. Palmese, P. Moreau, E.L. Bratkovskaya - Phys.Rev. C93 (2016), 014902

m_T spectra of pions and kaons at AGS energies

Palmese et al., **PRC94 (2016) 044912**, arXiv:1607.04073

m_T spectra of pions and kaons at SPS energies

Palmese et al., **PRC94 (2016) 044912**, arXiv:1607.04073

Sensitivity to the nuclear equation of state

A+A 0-5% central |y|<0.5 0.3 Palmese et al... A+A 0-5% central |y|<0.5 0.25 PRC94 (2016) 044912. $\Lambda + \Sigma^0$ 15 yield ($\Lambda + \Sigma^0$) arXiv:1607.04073 w/o CSR NL3 0.1 AGS (E895-E896) w/o CSR ····· **SPS (NA49)** Low sensitivity to the 0.05 RHIC (STAR) nuclear equation of state! AGS (E895-E896) 10 12 14 16 18 20 **SPS (NA49)** $\sqrt{s_{NN}}$ [GeV] .|....|....|....|....|....|.... A+A 0-5% central |v|<0.5 A+A 0-5% central |y|<0.5 A+A 0-5% central |y|<0.5 0.14 0.2 (b) w/o CSR 0.12 1.5 (Ξ) $^{'}\mathcal{E}/_{0}^{0.15}$ 0.15 AGS (E895-E896) 0.1 \(\frac{1}{5}\) 0.08 **SPS (NA49)** RHIC (STAR) w/o CSR 0.06 0.5 0.04 AGS (E895-E896) 0.05 SPS (NA49) **SPS (NA49)** 0.02 RHIC (STAR) 10 12 14 16 18 20 √s_{NN} [GeV] 10 12 14 16 18 20 10 12 14 16 18 20 $\sqrt{s_{NN}}$ [GeV] $\sqrt{s_{NN}}$ [GeV]

Strangeness content at low energies

At low collisional energy, the composition of the final particles is conditioned by the composition of the initial state

Production of particles containing u or d quarks is enhanced

Sensitivity to the system size: A+A collisions

Results for strangeness in A+A

- If the system size is smaller:
 - the peak of K^+/π^+ disappears
 - the peak of $(\Lambda + \Sigma^0)/\pi$ remains in the same position in energy, but getting smaller

Palmese et al., PRC94 (2016) 044912, arXiv:1607.04073

Sensitivity to the system size: p+A collisions

 In p+A collisions strange to non-strange particle ratios show no peaks

Palmese et al., **PRC94 (2016) 044912**, arXiv:1607.04073

Thermodynamics of strangeness in HIC

Which parts of the phase diagram in the (T, μ_B)-plane are probed by heavyion collisions via the strangeness production?

Summary

- The strangeness enhancement ('horn') seen experimentally by NA49 and STAR at a bombarding energy ~ 20-30 AGeV (FAIR/NICA energies) cannot be attributed to a deconfinement
- Including essential aspects of chiral symmetry restoration in the hadronic phase, we observe a rise in the K^+/π^+ ratio at low $\sqrt{s_{NN}}$ and then a drop due to the appearance of a partonic medium → a 'horn' emerges

Thank you for your attention!

PHSD group

GSI - Frankfurt University - FIAS
Elena Bratkovskaya
Taesoo Song
Pierre Moreau
Andrej Ilner
Hamza Berrehrah

Giessen University
Wolfgang Cassing
Thorsten Steinert
Alessia Palmese
Eduard Seifert
Olena Linnyk

External PHSD Collaborations

Texas A&M University: Che-Ming Ko

JINR, Dubna: Viacheslav Toneev Vadim Voronyuk

Duke University: Steffen Bass Yingru Xu

Helmholtz International Center

Valencia University: Daniel Cabrera

Barcelona University: Laura Tolos Angel Ramos