

Probing high-momentum neutrons and protons in asymmetric nuclei

A data-mining project using JLAB CLAS data

Meytal Duer

Tel-Aviv University

March 28, 2017

Workshop on high-density nuclear matter, Weizmann Institute

np-dominance in 2N-SRC

2

np-dominance in asymmetric nuclei

M. Sargsian Phys. Rev. C89(2014)3, 034305

O. Hen et al., Science 346, 614 (2014)

N>Z

$$\langle T_{p(n)} \rangle = \int n_{p(n)} \cdot \frac{k^2}{2m} \cdot d^3k$$

Pauli principle $\langle T_n \rangle > \langle T_p \rangle$ SRC $\langle T_p \rangle \stackrel{?}{>} \langle T_n \rangle$

Possible inversion of the momentum sharing

Theoretical predictions for <T_n>/<T_p> N>Z

Light nuclei (A<12)

Heavy nuclei (A>12)

Neutron Excess [(N-Z)/Z]

, R. B. Wiringa, R. Sehiavilla. S.C. Pieper, J. Carlson .Phys. Rev. C89, 024305 (2014)

J. Ryckebusch, M. Vanhalst and W. Cosyn, ₄ arXiv:1405.3814v3 [nucl-th] (2015).

Simple np-dominance model

$$n_{p}(k) = \begin{cases} \eta \cdot n_{p}^{M \cdot F \cdot}(k) & k < k_{0} \\ \frac{A}{2Z} \cdot a_{2}(A/d) \cdot n_{d}(k) & k > k_{0} \end{cases}$$

(for neutrons: $Z \rightarrow N$)

Simple estimate based on np-dominance

 $^{208}Pb: Z=82 N=126$

$$R_n = \frac{neutrons_{k>k_F}}{neutrons_{k$$

The goal:

Extracting $\frac{A(e, e'n)_{high}/A(e, e'n)_{low}}{{}^{12}C(e, e'n)_{high}} \int_{12}^{12}C(e, e'n)_{high}$ ratios

(and same for protons)

The steps:

* Identify (e,e'n) mean-field events (low missing momentum)

*** Identify (e,e'n) 2N-SRC events** (*high missing momentum*)

* Extract ratios and their uncertainties

Simple prediction based on the np-dominance model

$$\frac{A(e, e'n)}{A(e, e'n)} \int_{1^{2}}^{1^{2}} C(e, e'n)_{k > k_{0}}}{A(e, e'n)} \int_{1^{2}}^{1^{2}} C(e, e'n)_{k < k_{0}}}$$

$$\frac{A(e,e'p)}{A(e,e'p)} \frac{A(e,e'p)_{k>k_0}}{A(e,e'p)}$$

Data Mining JLAB CLAS EG2 data set

Run at 2004 in Hall-B

5.014 GeV electron beam

Deuterium + Solid target simultaneously

¹²C/²⁷Al/⁵⁶Fe/²⁰⁸Pb

Particle Identification

CLAS analysis note, L. El Fassi, 2011

O. Hen et al., Phys. Lett. B 772, 63 (2013) **O.** Hen et al., Science 346, 614 (2014) 10 Detecting neutrons in CLAS EC (M. Braverman TAU thesis, 2014)

Detecting neutrons in CLAS EC

* No signals from Drift-Chambers & Time-Of-Flight Counters

* Hit inside the EC fiducial cut

* n/y separation: β<0.95

$$\beta = \frac{R}{T \cdot c}$$

Using an exclusive reaction $d(e, e' p \pi^{\dagger} \pi^{-} n)$

Momentum resolution

Empirical momentum correction

Detection efficiency

$$\epsilon = \frac{d(e, e' p \pi^{\dagger} \pi) n}{d(e, e' p \pi^{\dagger} \pi n)}$$

E

12

Analysis of QE events:

I. Identifying A(e,e'n) and A(e,e'p) mean-field events

II. Identifying A(e,e'n) and A(e,e'p) high-momentum events

Selecting M.F. QE events

protons

neutrons

T.G. ONeill et al., Phys. Lett. B 87, 351 (1995). D. Abbott et al. Phys. Rev. Lett. 80, 5072 (1998). K. Garrow et al. Phys. Rev. C. 66, 044613 (2002).

Solutions

I. Using electron quantities & scattering angle of the nucleon

 $-0.05 < y < 0.25 \qquad 0.95 < \omega < 1.7 \, GeV \qquad \theta_{pq} < 8^{o}$ $y \equiv [(M_{A} + \omega)^{2} \sqrt{\lambda^{2} - M_{A-1}^{2} W^{2}} - |\vec{q}| \lambda] / W^{2} \qquad w = \sqrt{(M_{A} + \omega)^{2} - |\vec{q}|^{2}} \qquad \lambda = (M_{A-1}^{2} - M_{N}^{2} + \omega^{2}) / 2$

II. Using smeared protons to: * Define and test the cuts * Study bin migration

$$P_p \rightarrow P_{smeared} = \sum Gauss(P_p, \sigma)$$

False Positive & Negative probabilities

False Positive \simeq False Negative \simeq 10%

Selecting high-momentum QE events

- (e,e'p): Following CLAS analysis note (O. Hen 2012)
- (e,e'n): Same strategy as M.F.:
- I. Cut on common quantities:

$$x_B > 1.1$$
 $0.62 \le \frac{|\vec{P}_N|}{|\vec{q}|} \le 1.1$ $\theta_{Nq} \le 25^o$

II. Using smeared protons:

To determine cuts on P_{miss} & M_{miss}

False Positive & Negative probabilities

False Positive \simeq False Negative \simeq 15 %

A(e,e'p)/C(e,e'p) ratios

(compare smeared and un-smeared protons)

Mean-Field

High-momentum

Neutron Excess [(N-Z)/Z]

A(e,e'n)/A(e,e'p) ratios

Mean-Field High-momentum

Protons and **neutrons** super ratios

Neutron Excess [(N-Z)/Z]

Protons move faster than **neutrons** in N>Z nuclei

 $|\mathbf{T}\rangle > \langle \mathbf{T}\rangle$

Backup Slides

Solution 1: Using cuts common to (e,e'p) and (e,e'n) QE cuts:Pmiss<0.25 GeV/c Emiss<0.08 GeV

smeared protons

neutrons

Without applying any cuts

\boldsymbol{E}_{miss} \boldsymbol{P}_{miss} cuts

un-smeared protons

smeared protons (neutrons)

 $\boldsymbol{P}_{miss}[GeV/c]$

Comparing un-smeared protons

Comparing un-smeared protons

Checking the event selection

From energy momentum conservation:

 $|\varphi_N - \varphi_e| = 180^\circ$

smeared protons

neutrons

Comparing the smeared protons and neutrons

smeared protons

neutrons

Comparing the smeared protons and neutrons

smeared protons

neutrons

200

Applying corrections

protons

- * Coulomb correction
- * Detection efficiency
- ***** Acceptance correction

neutrons

- *** Detection efficiency**
- ***** Acceptance correction

Protons simulation

- ***** 10,000 electrons from the data.
- * Proton momentum & scattering angle uniformly distributed.
- * 100xphi angle uniformly distributed.
- * Running through CLAS MC simulation.
- * Dividing event by event by the ratio of reconstructed/generated.

Protons simulation - results

Sector #1 Sector #2 0.9 0.8 45 45 n o θ_p [degrees] [degrees] 0.7 07 40 40 0.6 0 6 35 0.5 35 0.5 0.4 30 30 0.3 0.3 25 25 0.2 0.2 0.1 20 0.1 20 p [GeV/c] p [GeV/c] Sector #3 Sector #4 50 0.9 45 45 0.8 θ_p [degrees] θ_{p} [degrees] 0.7 40 40 0.6 35 35 0.5 0.4 30 30 25 25 0.2 0.2 0.1 0.1 20 1.4 2.4 p [GeV/c] p [GeV/c] Sector #5 Sector #6 50 0.9 0.9 0.8 0.8 45 45 θ_p [degrees] degrees 0.7 0.7 40 40 0.6 35 35 0.5 0.4 30 30 0.3 25 25 0.2 0.2 0.1 0.1 20 20[1.2 1.4 1.6 2.2 2.4 p [GeV/c] p [GeV/c]

A(e,e'p)/A(e,e'n) M.F. ratios

[4] W. P. Ford, S. Jeschonnek & J. W. Van Orden, arXiv:1411.3306v1 [nucl-th] (2014)

36

Uncertainties of the event selection

Cut	Cuts sensitivity				
	Range	С	AI	Fe	Pb
-0.05 <y<0.25< td=""><td>±0.05</td><td>0.84%</td><td>0.83%</td><td>0.58%</td><td>0.81%</td></y<0.25<>	±0.05	0.84%	0.83%	0.58%	0.81%
0.95<ω<1.7 GeV	±0.05 GeV	2.1%	2.0%	1.9%	1.8%
$\theta_{pq} < 8$ P < 0.3 GeV/c	±1°	2.0%	1.8%	1.6%	1.4%
$E_{miss} < 0.19 GeV$	±0.025 GeV/c	0.82%	0.49%	0.56%	0.78%
	±0.02 GeV	1.9%	2.2%	2.1%	2.1%
EC fiducial cut: 10 cm	30 cm	0.1%	0.11%	0.10%	0.09%

Contributions to the uncertainty

Nuclei	A(e,e'p)/A(e,e'n)	Statistics	Neutron Effic.	Simulation	Event selection
С	2.37±0.17	±0.15	±0.07	±0.031	±0.09
Al	2.36±0.23	±0.19	±0.08	±0.030	±0.09
Fe	2.48±0.20	±0.15	±0.07	±0.032	±0.08
Pb	2.21±0.22	±0.18	±0.09	±0.034	±0.07

Uncertainties of the event selection A(e,e'p)/C(e,e'p) M.F.

Cut	Cuts sensitivity				
	Range	AI/C	Fe/C	Pb/C	
-0.05 <y<0.25< td=""><td>±0.05</td><td>1.6%</td><td>1.3%</td><td>1.2%</td></y<0.25<>	±0.05	1.6%	1.3%	1.2%	
0.95<ω<1.7 GeV	±0.05 GeV	1.4%	0.8%	2.0%	
θ _{pq} <8°	±1°	1.9%	1.9%	1.6%	
P_{miss} < 0.3 GeV/c	±0.025 GeV/c	2.0%	2.0%	1.8%	
E_{miss} < 0.19 GeV	±0.02 GeV	1.8%	1.8%	1.9%	

Nuclei	A(e,e'p)/C(e,e'p)	Statistics	FP & FN	Event selection
AI/C	1.71±0.08	±0.05	±0.02	±0.06
Fe/C	2.4±0.11	±0.03	±0.02	±0.1
Pb/C	5.2±0.23	±0.1	±0.05	±0.2

A(e,e'n)/C(e,e'n) M.F. ratios

A

Nuclei	A(e,e'p)/A(e,e'n)	Statistics	FP & FN	Event selection
AI/C	2.1±0.14	±0.12	±0.02	±0.06
Fe/C	3.2±0.12	±0.07	±0.02	±0.1
Pb/C	9.2±0.4	±0.17	±0.06	±0.06

Uncertainties of the event selection A(e,e'n)/C(e,e'n) M.F.

Cut	Cuts sensitivity				
	Range	AI/C	Fe/C	Pb/C	
-0.05 <y<0.25< td=""><td>±0.05</td><td>0.8%</td><td>1.3%</td><td>1.2%</td></y<0.25<>	±0.05	0.8%	1.3%	1.2%	
0.95<ω<1.7 GeV	±0.05 GeV	1.4%	1.2%	1.7%	
$\theta_{pq} < 8^{\circ}$	±1°	1.5%	1.6%	1.0%	
P_{miss} < 0.3 GeV/c	±0.025 GeV/c	1.2%	1.3%	1.5%	
E_{miss} < 0.19 GeV	±0.02 GeV	0.8%	0.9%	1.4%	

Protons and neutrons M.F ratios

A

Corrected for transparency and normalized by Z (N).

1st step: Following approved CLAS analysis note (O. Hen 2012) to identify high momentum (e,e'p) events $x_{B} > 1.2$ $* 0.3 \le P_{miss} \le 1 GeV/c$

* $0.62 \le |\vec{P}_{lead}| / |\vec{q}| \le 0.96$

$$\star M_{miss} \leq 1.1 \, GeV/c^2$$

*
$$\theta_{pq} \leq 25^{\circ}$$

¹ step: Modifying the cuts to select high momentum (e,e'n) events

Identifying the Leading Nucleon

un-smeared protons

smeared protons

neutrons

$$\theta_{pq} \leq 25^{\circ}$$
$$0.62 \leq \frac{\left|\vec{P}_{N}\right|}{\left|\vec{q}\right|} \leq 0.96$$

 $\theta_{pq} \leq 25^{\circ}$ $0.62 \leq \frac{\left|\vec{P}_{N}\right|}{\left|\vec{q}\right|} \leq 0.96$

Missing Momentum & Missing Mass cuts

un-smeared protons 'good event': 0.3<P_{miss-unsmeared}<1GeV/c && M_{miss-unsmeared}<1.1GeV/c²

'bad event':
$$P_{miss-unsmeared} < 0.3$$

 $II P_{miss-unsmeared} > 1 GeV/c$
 $II M_{miss-unsmeared} > 1.1 GeV/c^2$

smeared protons neutrons

The selected events:

This analysisProton analysis(smeared protons & neutrons)(O. Hen et al.)

 $x_B > 1.1$ $x_B > 1.2$ 0.62 < p/q < 1.10.62 < p/q < 0.96 $\theta_{pq} < 25^{\circ}$ $\theta_{pq} < 25^{\circ}$ $M_{miss} < 1.2 GeV/c^2$ $M_{miss} < 1.1 GeV/c^2$ $0.4 < P_{miss} < 1 GeV/c$ $0.3 < P_{miss} < 1 GeV/c$

Comparing smeared protons & neutrons distributions:

Comparing smeared protons & neutrons distributions:

Missing energy distribution

51

A(e,e'p)/C(e,e'p) ratios

(for smeared protons)

Corrections:

1. Normalization: target density & beam charge (FC)

	С	AI	Fe	Pb
Beam charge	3581.8	2719.4	5632.3	5079.6
Thickness [g/cm ²]	0.3	0.156	0.315	0.159

2. Radiative correction

3. False positive & negative probabilities

	С	AI	Fe	Pb
False positive [%]	15.1	14.5	15.0	14.2
False negative [%]	14.9	14.7	14.8	14.6

Contributions for the uncertainty 1. Statistical error

2. Cut sensitivity

Cut	Sensitivity range	AI/C	Fe/C	Pb/C
x>1.1	±0.05	0.83%	1.5%	2.0%
0.62 <p q<1.1<="" td=""><td>±0.05</td><td>2.0%</td><td>2.5%</td><td>2.4%</td></p>	±0.05	2.0%	2.5%	2.4%
$\theta_{pq} < 25^{\circ}$	±5°			
M_{miss} < 1.175 GeV/ c^2	±0.05 GeV/c ²	1.7%	1.8%	1.2%
$0.4 < P_{miss} < 1 GeV/c$	±0.025 GeV/c	2.2%	1.1%	2.6%

3. Radiative correction (negligible)

4. False positive and negative probabilities

AI/C	Fe/C	Pb/C
0.3%	0.9%	1.0%

5. Target density and beam charge (negligible)

Contributions for the uncertainty

	AI/C	Fe/C	Pb/C
σ_A/σ_C	2.0±0.1	3.2±0.3	7.6±0.8
Event selection	±0.13 (92%)	±0.25 (80%)	±0.75 (93%)
False positive & negative	±0.02 (14%)	±0.03 (10%)	±0.08 (10%)
Statistics	±0.08 (57%)	±0.06 (20%)	±0.15 (19%)

Protons and neutrons high momentum ratios

Corrected for transparency and normalized by Z (N)