Open Questions in Hypernuclear Physics

Avraham Gal, Hebrew University, Jerusalem

- Dynamics of Λ hypernuclei (^A_ΛZ)
 (i) Λ few-body & (ii) neutron-rich systems
- $\Lambda\Lambda$ hypernuclei: long-lived H dibaryon?
- Hyperons (Λ, Σ, Ξ) in nuclear matter & beyond
 (i) |S| → ∞: strange hadronic matter?
 (ii) hyperons in neutron stars?
 (iii) competition with K̄ condensation?
- Strangeness Nuclear Physics reviews:
 (i) Nucl. Phys. A Special Issues 881 (2012) & 954 (2016)
 A. Gal, J. Pochodzalla, Eds.
 (ii) Rev. Mod. Phys. 88 (2016) 035004
 A. Gal, E.V. Hungerford, D.J. Millener

 Λ hypernuclear dynamics

Observation of Λ single-particle states

H. Hotchi et al., Phys. Rev. C 64 (2001) 044302 $B_{\Lambda} = 23.11 \pm 0.10$ MeV T. Motoba, D.E. Lanskoy, D.J. Millener, Y. Yamamoto, NPA 804 (2008) 99: negligible Λ spin-orbit splittings, 0.2 MeV for $1f_{\Lambda}$

Update: Millener, Dover, Gal PRC 38, 2700 (1988)

Woods-Saxon V = 30.05 MeV, r = 1.165 fm, a = 0.6 fm

Textbook example of shell model at work. Skyrme-Hartree-Fock studies suggest ΛNN repulsion.

Hyperon puzzle: QMC calculations

- Adding ΛNN stiffens EOS of neutron stars.
- Other hyperons need to be considered too.

Room for hypernuclear spectroscopy

H. Hotchi et al., PRC 64 (2001) 044302 L. Tang et al., PRC 90 (2014) 034320 $1s_{\Lambda}-1p_{\Lambda}$ intermediate structure Jlab: ${}^{12}C(e, e'K^+){}^{12}_{\Lambda}B$ (HKS) Spin-nonflip exc., $\Delta S=0$ Spin-flip excitations, $\Delta S=1$

energy resolution 1.6 MeV \rightarrow 0.6 MeV in Hall-C E05-115

Hypernuclear production in $(K_{\text{stop}}^{-}, \pi^{-})$, PLB 698 (2011) 219 & 226

Production spectrum on ⁷LiThree ${}^{7}_{\Lambda}$ Li levels, δB_{Λ} =0.4 MeVFINUDA, DA Φ NE, FrascatiFormation rate $1 \cdot 10^{-3}/K_{stop}^{-1}$ A=7-16 data also indicateDEEP K⁻ nuclear potential.

FINUDA+Gal (2012) [PRL 108, 042501; NPA 881, 269]

• Three $(K_{\text{stop}}^-, \pi^+) {}_{\Lambda}^6 \mathbf{H}$ events out of 2.7 x 10⁷ K_{stop}^- .

• $B_{\Lambda}({}^{6}_{\Lambda}\mathbf{H}) \& \Delta E(1^{+}-0^{+}) \text{ constrain } \Lambda N \leftrightarrow \Sigma N \text{ in n-rich } {}^{A}_{\Lambda}Z.$

A hypernuclear spectra from γ -ray measurements

H. Tamura et al., Nucl. Phys. A 835 (2010) 3, updated at HYP12 Λ spin-orbit splitting (keV): 150 in ${}^{13}_{\Lambda}$ C & related 43 in ${}^{9}_{\Lambda}$ Be

p-shell Λ Hypernuclei

 $V_{\Lambda N} = V_0(r) + V_\sigma(r) \ s_N \cdot s_\Lambda + V_{LS}(r) \ l_{N\Lambda} \cdot (s_\Lambda + s_N) + V_{ALS}(r) \ l_{N\Lambda} \cdot (s_\Lambda - s_N) + V_T(r) \ S_{12}$ For $p_N s_Y$: $V_{\Lambda N} = \bar{V} + \Delta \ s_N \cdot s_\Lambda + S_\Lambda \ l_N \cdot s_\Lambda + S_N \ l_N \cdot s_N + T \ S_{12}$

R.H Dalitz, A. Gal, Ann. Phys. 116 (1978) 167
D.J. Millener, A. Gal, C.B. Dover, R.H. Dalitz, PRC 31 (1985) 499

$N\Lambda$ - $N\Lambda$	$ar{V}$	Δ	S_{Λ}	S_N	T	(MeV)
A = 7 - 9	(-1.32)	0.430	-0.015	-0.390	0.030	
A = 11 - 16	(-1.32)	0.330	-0.015	-0.350	0.024	
$N\Lambda$ - $N\Sigma$	1.45	3.04	-0.085	-0.085	0.157	

D.J. Millener, Nucl. Phys. A 804 (2008) 84

Doublet spacings in *p*-shell hypernuclei (in keV) D.J. Millener, NPA 881 (2012) 298

	J_u^{π}	J_l^{π}	$\Lambda\Sigma$	Δ	S_{Λ}	S_N	T	ΔE^{th}	ΔE^{\exp}
$^{7}_{\Lambda}{ m Li}$	$3/2^{+}$	$1/2^{+}$	72	628	-1	-4	-9	693	692
$^7_\Lambda { m Li}$	$7/2^{+}$	$5/2^{+}$	74	557	-32	-8	-71	494	471
$^{8}_{\Lambda}{ m Li}$	2^{-}	1-	151	396	-14	-16	-24	450	(442)
$^9_\Lambda { m Be}$	$3/2^{+}$	$5/2^{+}$	-8	-14	37	0	28	44	43
$^{11}_{\Lambda}\mathrm{B}$	$7/2^{+}$	$5/2^{+}$	56	339	-37	-10	-80	267	264
$^{11}_{\Lambda}{ m B}$	$3/2^{+}$	$1/2^{+}$	61	424	-3	-44	-10	475	505
$^{12}_{\Lambda}{ m C}$	2^{-}	1-	61	175	-22	-13	-42	153	161
$^{15}_{~\Lambda}{ m N}$	$3/2_2^+$	$1/2_{2}^{+}$	65	451	-2	-16	-10	507	481
$^{16}_{\Lambda}{ m O}$	1-	0-	-33	-123	-20	1	188	23	26
$^{16}_{\Lambda}{ m O}$	2^{-}	1_{2}^{-}	92	207	-21	1	-41	248	224

A spin dependence parameters Δ, S_{Λ}, T determined by doublet spacings

The lightest, s-shell, Λ hypernuclei

$^{\mathrm{A}}_{\Lambda}\mathrm{Z}$	T	$J_{ m g.s.}^{\pi}$	$B_{\Lambda} \ ({\rm MeV})$	$J_{\rm exc.}^{\pi}$	E_x (MeV)
$^3_{\Lambda}{ m H}$	0	$1/2^{+}$	0.13(5)		
$^4_{\Lambda} \mathrm{H-}^4_{\Lambda} \mathrm{He}$	1/2	0^{+}	2.04(4) - 2.39(3)	1^{+}	1.09(2) - 1.406(3)
$^{5}_{\Lambda}\mathrm{He}$	0	$1/2^{+}$	3.12(2)		

- No ΛN and no Λnn bound state are expected.
- $\Delta B_{\Lambda}({}^{4}_{\Lambda}\text{He}-{}^{4}_{\Lambda}\text{H})=0.35(5)$ MeV: very large CSB.

Recent A = 3, 4 few-body calculations

- A. Nogga, NPA 914 (2013) 140 Faddeev & Faddeev-Yakubovsky (chiral LO & NLO).
- E. Hiyama et al., PRC 89 (2014) 061302(R) Jacobi-coordinates Gaussian basis (Nijmegen soft-core).
- R. Wirth et al., PRL 113 (2014) 192502. ab-initio Jacobi-NCSM (chiral LO).

${}^{3}_{\Lambda}$ H lifetime puzzle

The weakly-bound ${}^{3}_{\Lambda}$ H, B_{Λ} =0.13±0.05 MeV, expected to have lifetime within a few % of the free Λ lifetime. Recent heavy-ion ${}^{3}_{\Lambda}$ H production experiments yield lifetimes shorter by $\approx 30\%$. ALICE, PLB 754 (2016) 360.

LO χ EFT YN model: PS meson exchange + 5 contact terms [Polinder-Haidenbauer-Meißner, NPA 779, 244 (2006)].

The ${}^{4}_{\Lambda}$ H- ${}^{4}_{\Lambda}$ He complex & CSB since 2015 MAMI's A1, ${}^{4}_{\Lambda}$ H \rightarrow ⁴He+ π^{-} , PRL 114 (2015) 232501 J-PARC's E13, 4 He($K^{-}, \pi^{-}\gamma$), PRL 115 (2015) 222501

CSB due to Λ - Σ^0 mixing, strongly spin dependent, dominantly in $0^+_{g.s.}$, large w.r.t. \approx -70 keV in ³H-³He. Remeasure ${}^4_{\Lambda}$ He_{g.s.} (E13).

From SI $\Lambda \Sigma$ coupling to CSB Λ - Σ^0 mixing

Dalitz-von Hippel (1964): "applies to any I=1 meson exchange, π , ρ ..." & also to χ EFT contact interactions. Applied systematically in recent work by A. Gal, PLB 744 (2015) 352 (also in p shell) and by D. Gazda, A. Gal (2016) PRL 116, 122501; NPA 954, 161.

NCSM HO $\hbar\omega$ dependence of $\Delta B_{\Lambda}(^{4}_{\Lambda}He-^{4}_{\Lambda}H)$ for 0⁺ & 1⁺. Note \pm sign pattern resulting from $^{1}S_{0}$ Λ - Σ contact term dominance at LO [see OPE discussion NPA 954 (2016) 161]. Λ =600 MeV: $\Delta E_{\gamma} = \Delta(\Delta B_{\Lambda}) = 0.33 \pm 0.03$ MeV compared to a measured $\Delta E_{\gamma} = 0.32 \pm 0.02$ MeV.

CSB in p-shell hypernuclei

E. Botta, T. Bressani, A. Feliciello, NPA 960 (2017) 165-179 CSB appears to be much weaker in the A=7 isotriplet than in the A=4 isodoublet provided counter experiments are not compared directly with old emulsion results.

$\Lambda\Lambda$ hypernuclei

Nagara event, ${}_{\Lambda\Lambda}{}^{6}$ He, (KEK-E373) PRL 87 (2001) 212502 $B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{6}$ He_{g.s.})=6.91±0.16 MeV, unambiguously determined.

- A: Ξ^- capture $\Xi^- + {}^{12}C \rightarrow {}^{6}_{\Lambda\Lambda}He + t + \alpha$
- B: weak decay ${}_{\Lambda\Lambda}{}^{6}\text{He} \rightarrow {}_{\Lambda}{}^{5}\text{He} + p + \pi^{-}$ (no ${}_{\Lambda\Lambda}{}^{6}\text{He} \rightarrow {}^{4}\text{He} + H$)
- C: ${}_{\Lambda}^{5}$ He nonmesic weak decay to 2 Z=1 recoils + n.

The elusive H dibaryon Jaffe's H(uuddss) [PRL 38 (1977) 195] predicted stable

 $\mathbf{H} \sim \mathcal{A}[\sqrt{1/8} \Lambda \Lambda + \sqrt{1/2} N \Xi - \sqrt{3/8} \Sigma \Sigma,]_{I=S=0}$

- To forbid ${}^{6}_{\Lambda\Lambda}$ He \rightarrow H+⁴He, impose B(H) \leq 7 MeV. A bound H most likely overbinds ${}^{6}_{\Lambda\Lambda}$ He [Gal, PRL 110 (2013) 179201].
- Weakly bound H in Lattice QCD calculations. SU(3)_f breaking pushes it to ≈NΞ threshold,
 ≈26 MeV in ΛΛ continuum [HALQCD, NPA 881 (2012) 28; Haidenbauer & Meißner, ibid. 44].
- Experimental searches also rule out a bound H. J-PARC E42 will search for H in (K^-, K^+) .

Faddeev calc. by I.N. Filikhin, A. Gal, NPA 707 (2002) 491 $\Delta B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{6}\text{He}) \equiv B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{6}\text{He}) - 2B_{\Lambda}({}_{\Lambda}{}^{5}\text{He}) \approx 0.7 \text{ MeV}$ implying that ${}_{\Lambda\Lambda}{}^{5}\text{H} \& {}_{\Lambda\Lambda}{}^{5}\text{He}$ are also bound. With ${}_{\Lambda\Lambda}{}^{4}\text{H}$ likely unbound, $\Lambda\Lambda$ binding onset is ${}_{\Lambda\Lambda}{}^{5}\text{H} \& {}_{\Lambda\Lambda}{}^{5}\text{He}$.

Binding energy consistency of $\Lambda\Lambda$ hypernuclei

event	${}^{A}_{\Lambda\Lambda}Z$	$B^{ m exp}_{\Lambda\Lambda}$	$B^{\mathrm{CM}}_{\Lambda\Lambda}$ †	$B^{ m SM}_{\Lambda\Lambda}$ ††		
E373-Nagara	$^{6}_{\Lambda\Lambda}{ m He}$	6.91 ± 0.16	6.91 ± 0.16	6.91 ± 0.16		
E373-DemYan	$^{10}_{\Lambda\Lambda}{ m Be}$	$14.94 \pm 0.13 \ddagger$	14.74 ± 0.16	14.97 ± 0.22		
E373-Hida	$^{11}_{\Lambda\Lambda}{ m Be}$	20.83 ± 1.27	18.23 ± 0.16	18.40 ± 0.28		
E373-Hida	$^{12}_{\Lambda\Lambda}{ m Be}$	22.48 ± 1.21	_	20.72 ± 0.20		
E176	$^{13}_{\Lambda\Lambda}{\rm B}$	23.4 ± 0.7 *	_	23.21 ± 0.21		
† E. Hiyama et al., PRL 104 (2010) 212502, & refs. therein						

- †† A. Gal, D.J. Millener, PLB 701 (2011) 342, assuming that $\langle V_{\Lambda\Lambda} \rangle \approx \Delta B_{\Lambda\Lambda} ({}_{\Lambda\Lambda}{}^{6}\text{He}) = 0.67 \pm 0.16 \text{ MeV}$
- ‡ Assuming production in $^{10}_{\Lambda\Lambda}$ Be non g.s. 2⁺(3.04 MeV)
- * Assuming ${}^{13}_{\Lambda\Lambda}B_{g.s.}$ decay to ${}^{13}_{\Lambda}C^*(5/2^+, 3/2^+; 4.8 \text{ MeV}) + \pi^-$
- Unassigned Hida event [PTPS 185 (2010) 335]
- $B_{\Lambda\Lambda}^{\rm SM} \approx B_{\Lambda\Lambda}^{\rm CM}$, but SM spans a wider A range

Other Strange Hadrons in Matter

Hyperon-Nucleus potentials from LQCD

 Σ – repulsion, Ξ – weak attraction

D. Gazda, E. Friedman, A. Gal, J. Mareš, PRC 77 (2008) 045206 Saturation of $B_{\bar{K}}(\kappa)$ in RMF for multi- K^{-40} Ca nuclei. Vector-meson repulsion among \bar{K} mesons. $B_{\bar{K}}(\kappa \to \infty) << (m_K + M_N - M_\Lambda) \approx 320$ MeV.

Gazda-Friedman-Gal-Mareš, Phys. Rev. C 80 (2009) 035205 Saturation of $B_{\bar{K}}(\kappa)$ in RMF for ${}^{208}\text{Pb} + \eta\Lambda + \kappa K^-$. \bar{K} mesons do not replace hyperons in stable self-bound strange matter. No kaon condensation on earth...

Summary & Outlook

- ΛN hypernuclear spin dependence deciphered.
- How small is Λ spin-orbit splitting and why?
- Role of 3-body ΛNN interactions in hypernuclei & neutron stars?
- Resolve the ${}^{3}_{\Lambda}$ H lifetime puzzle from HIC.
- Re-measure the ${}^{4}_{\Lambda}$ H- ${}^{4}_{\Lambda}$ He complex (E13).
- Search for n-rich ${}^{A}_{\Lambda}\mathbf{Z}$; ${}^{6}_{\Lambda}\mathbf{H}$? (E10).
- Repulsive Σ-nuclear interaction; how repulsive? (relevant to neutron star matter & to strange hadronic matter).
- Search for H dibaryon in (K^-, K^+) (E42).

- Onset of $\Lambda\Lambda$ binding: ${}_{\Lambda\Lambda}{}^{4}H$ or ${}_{\Lambda\Lambda}{}^{5}Z$? (E07).
- Shell model works well for g.s. beyond ${}_{\Lambda\Lambda}{}^{6}$ He.
- Study excited states by slowing down Ξ^- from $\bar{p}p \rightarrow \Xi^- \bar{\Xi}^+$ in FAIR (PANDA).
- Do Ξ hyperons quasi-bind in nuclei $(\Xi N \to \Lambda \Lambda)$? No quasibound Ξ established yet (E05).
- Onset of Ξ stability: ${}_{\Lambda\Xi}^{6}$ He or ${}_{\Lambda\Lambda\Xi}^{7}$ He?
- No \overline{K} condensation in self-bound matter. { N, Λ, Ξ } provides Strange-Hadronic-Matter g.s.

J-PARC SNP Experiments: Stage-1 Stage-2 Day-1

- E03: X rays from Ξ^- atoms
- **E05:** ${}^{12}C(K^-, K^+){}^{12}_{\Xi}Be$ **textBlue**
- E07: S=-2 emulsion-counter studies
- E10: DCX studies of neutron-rich ${}^{A}_{\Lambda}Z$
- E13: γ -ray spectroscopy of Λ hypernuclei
- E15: search for K^-pp in ${}^{3}\text{He}(K^-, n)$
- E18: $^{12}_{\Lambda}$ C weak decays
- E19: search for Θ^+ pentaquark in $\pi^- p \to K^- X$
- E22: weak interactions in ${}^{4}_{\Lambda}H {}^{4}_{\Lambda}He$
- E27: search for K^-pp in $d(\pi^+, K^+)$
- E31: study of $\Lambda(1405)$ by in-flight $d(K^-, n)$
- E40: measurement of Σp scattering
- E42: search for *H*-dibaryon in (K^-, K^+) nuclear reactions
- E62: precision spectroscopy of X-rays from kaonic atoms with TES