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Spherical spin glasses models

• Random Hamiltonians on the unit sphere SN ⊂ RN , N � 1.

• Pure p-spin models: Fix p ≥ 2. Consider the homogeneous

polynomial with i.i.d coefficients Ji1,...,ip ∼ N(0, 1),

HN,p(x) =
√
N

N∑
i1,...,ip=1

Ji1,...,ipxi1xi2 · · · xip , x ∈ SN .

• Mixed models: γp ≥ 0 – real parameters, ν(t) =
∑

p γ
2
pt

p.

HN,ν(x) =
∑
p

γpHN,p(x), x ∈ SN .

• Covariance: E{HN,ν(x)HN,ν(x′)} = Nν(〈x, x′〉).
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The Gibbs measure – general results

Gibbs meas.: GN,β(A) = 1
ZN,β

∫
A eβHN(x)dx, A ⊂ SN , β ≥ 0.

Partition function: ZN,β =
∫
SN eβHN(x)dx.

Ultrametricity: (Panchenko ‘13)

∀ε > 0 : G⊗3N,β{d(x1, x3) ≤ d(x1, x2) ∨ d(x2, x3) + ε} P
−→

N→∞
1.

Remark: any finite ultrametric space

{x1, ..., xk} can be represented by a tree.
d0

d1

x1 x2 x3

d2

x4 x5
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The Gibbs measure – general results

Gibbs meas.: GN,β(A) = 1
ZN,β

∫
A eβHN(x)dx, A ⊂ SN , β ≥ 0.

Partition function: ZN,β =
∫
SN eβHN(x)dx.

Cluster decomposition: (Talagrand ‘10, Jagannath ‘14)

There exist disjoint random Ai ⊂ SN such that:

1. GN,β{∪Ai} → 1,

2. {GN,β{Ai}}i converges in distribution to some Wi > 0,

3. ∃tij random, s.t conditional on x1 ∈ Ai , x2 ∈ Aj ,

G⊗2N,β {|d(x1, x2)− tij | > ε} → 0.
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Critical points and the Gibbs

measure, pure models



Critical points

Definition. x ∈ SN is critical if ∇HN(x) = 0.

For B ⊂ R, Crit(B) := # critical values of HN(x) in B.
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Critical points

HN(x)

B

Definition. x ∈ SN is critical if ∇HN(x) = 0.

For B ⊂ R, Crit(B) := # critical values of HN(x) in B.
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Critical points

Theorem (Auffinger–Ben Arous–Černý ‘13)

lim
N→∞

1

N
log (E {Crit(NB)}) = sup

x∈B
Θp (x) .

Theorem (S. ‘15)

For B ⊂ (E∞,E0),
Crit (NB)

E {Crit (NB)}
−→ 1, in prob.

x

Θp(x)

E0(p)2
√

p−1
p =: E∞(p)
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Critical points

Theorem (Auffinger–Ben Arous–Černý ‘13)

lim
N→∞

1

N
log (E {Crit(NB)}) = sup

x∈B
Θp (x) .

Theorem (S. ‘15)

For B ⊂ (E∞,E0),
Crit (NB)

E {Crit (NB)}
−→ 1, in prob.

Lemma (S. ‘15)

BN ⊂ (E∞,E0), |BN | → 0 =⇒ P
{
|〈x1, x2〉| > ε

}
→ 0,

if x1 6= x2 are random (unif.) crt. pts. such that HN(xi ) ∈ NBN .

Theorem (S.–Zeitouni ‘16)

The critical values near Emaxx HN(x) converge to PPP(ecpxdx).
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The Gibbs measure

• Fix some sequence N−
1
2 � tN � 1.

q∗ = q∗(β) explicit.

Band (x0) :=
{

x ∈ SN : q∗ − tN ≤ 〈x, x0〉 ≤ q∗ + tN

}
.

• Enumerate the crt. pts. xi0, i ≥ 1,

in decreasing order:

HN(xi0) ≥ HN(xi+1
0 ).
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The Gibbs measure

Theorem (S. ‘16)

For the pure model with p ≥ 3 and large enough β,

1. Asymptotic support: ∀ε > 0, for large k , N,

P
{
GN,β

(
∪i≤kBand(xi0)

)
> 1− ε

}
≥ 1− ε.

2. Suppose x1, x2 drawn independently from the Gibbs measure.

Then, with probability going to 1, for small ε > 0

|〈x1, x2〉| < ε⇐⇒ x1, x2 ∈ different bands,

|〈x1, x2〉 − q2∗ | < ε⇐⇒ x1, x2 ∈ same band.
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Overlap distribution

x0
• Given a sample x ∈ Band(x0),

x ≈ q∗x0 + x⊥,

〈x0, x⊥〉 = 0.

x

q∗x0
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Overlap distribution

x0
• Given a sample x ∈ Band(x0),

x ≈ q∗x0 + x⊥,

〈x0, x⊥〉 = 0.

x

q∗x0

• For samples x, y w.h.p

〈x, y〉 ≈ 〈q∗x0, q∗y0〉
= q2∗〈x0, y0〉.
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Overlap distribution

x0
• Given a sample x ∈ Band(x0),

x ≈ q∗x0 + x⊥,

〈x0, x⊥〉 = 0.

x

q∗x0

• For samples x, y w.h.p

〈x, y〉 ≈ 〈q∗x0, q∗y0〉
= q2∗〈x0, y0〉.

• Recall: deep crt. pts. are

orthogonal w.h.p. Thus,

〈x0, y0〉 ≈ 0 or 1.
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Mixed models – work in progress (\w Ben Arous, Zeitouni)

• Reminder: HN,ν(x) =
∑

p γpHN,p(x) , ν(x) =
∑
γpx

p .

• From now on assume ν close enough to pure:

|ν(4)(1)− ν(4)p (1)| < δ, νp(x) = xp.

• All the results about critical points hold as in the pure case.

• For large β, the Gibbs measure GN,β concentrates on bands around

critical points.

• However, the relevant critical points depend on β!

• Compared to the pure case, more complicated structure on bands.

For two samples from the same band 〈x1, x2〉 > q2∗ .

But still, for points from different bands 〈x1, x2〉 ≈ 0.
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Temperature chaos

• Let β1 6= β2 be two inverse-temperatures.

• With the disorder HN(x) fixed, let x1 and x2 be independent

samples from GN,β1 and GN,β2 . (recall: dGN,β ∝ eβHN(x)dx)

• We say that temperature chaos occurs if

〈x1, x2〉
P
−→

N→∞
0.

• Small change in temperature results in a drastic change of the

Gibbs measure.
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Temperature chaos

Theorem (Chen–Panchenko ‘16)

For even generic models (under some conditions) temperature

chaos occurs.

Even: p odd =⇒ γp = 0, generic:
∑

p−11{γp 6= 0} =∞.

Theorem (Chen–Panchenko ‘16)

Let p ≥ 4 even, p′ 6= p, a ∈ (0, 14). For

HN(x) := HN,p(x) + 1
NaHN,p′(x)

temperature chaos occurs.

Theorem (S. ‘16)

For the pure spherical models, p ≥ 3, with β1, β2 large enough,

temperature chaos does not occur.
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Temperature chaos

Theorem (S. ‘16)

For the pure spherical models, p ≥ 3, with β1, β2 large enough,

temperature chaos does not occur.

Sketch of proof. For large K , both GN,β1 and GN,β2 are essentially

supported on the set of bands around x10, ..., x
K
0 with q∗(β1) 6= q∗(β2).

As before, if x ∈ Bandβ1(xi0), x′ ∈ Bandβ2(xj0),

then

〈x, x′〉 ≈ q∗(β1)q∗(β2)〈xi0, x
j
0〉.

=⇒ GN,β1 × GN,β2

{
〈x, x′〉 ≈ q∗(β1)q∗(β2)

}
=
∑
i

GN,β1(Bandβ1(xi0))GN,β2(Bandβ2(xi0)).
11



Temperature chaos

On the other hand, for the mixed models (close to pure), the

critical points GN,β1 and GN,β2 are supported correspond to

different heights NEβ1∗ and NEβ2∗ of the Hamiltonian and they are

orthogonal.

Therefore, typically for two samples

x ∈ Bandβ1(xi0), x′ ∈ Bandβ2(xj0),

〈x, x′〉 ≈ 0,

and temperature chaos occurs.
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Conditional models on bands

• The Gibbs measure dGN,β ∝ eβHN(x)dx

mainly charges high values of HN(x).

• For an explicit Et = Et(β), w.h.p.

{x : HN(x) < NEt} has negligible meas.

• The complement is covered by nbhds

{x : 〈x, x0〉 ≥ qt}
of critical pts x0 with HN(x0) ≥ NEt .

• The latter set is covered by the union, going over all heights

E > Et and ‘overlaps’ q ∈ (qt , 1), of the bands:

Band(x0, q) := {x : 〈x, x0〉 ≈ q} , x0 crit. , HN(x0) ≈ NE .

• To prove that GN,β concentrates on bands, we show that the weight

of those bands is maximized at log. scale for specific E∗, q∗.

13
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Conditional models on bands

For given height E and ‘overlap’ q:

• Number of bands ≈ exp{NΘν(E )}.

• Each band has volume ≈ (1− q2)
N
2 .

• For each critical x0, associate the weight∫
eβHN |q(x)dx,

where

HN |q : SN−1 → R , HN |q(x) = HN ◦ f (x)

is the restriction of HN to the sub-sphere {x : 〈x, x0〉 = q}, up to a

change of coordinates.

Simplification: assume those weights are i.i.d., with law obtained

from conditioning on ∇HN(x0) = 0 , HN(x0) = NE .
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Conditional models on bands – pure case

• For the pure p-spin model,

HN,p|q(x)
d
= αp,0(q)HN,p(x0)

+ αp,1(q)〈∇HN,p(x0), x〉

+

p∑
k=2

αp,k(q)H
(p)
N,k(x) ,

H
(p)
N,k are copies of pure k-spin models,

αp,k(q) ∈ R explicit,

all summands are independent.

• Upon conditioning on HN,p(x0) = NE , ∇HN,p(x0) = 0,

HN,p|q(x)
d
= αp,0(q)NE +

p∑
k=2

αp,k(q)H
(p)
N,k(x).

15



Conditional models on bands – pure case

HN,p|q(x)
d
= αp,0(q)NE +

p∑
k=2

αp,k(q)H
(p)
N,k(x)

• The weight corresponding to a single band is∫
eβHN,p |q(x)dx = eNαp,0(q)βE

∫
eβ

∑p
k=2 αp,k (q)H

(p)
N,k (x)dx.

• Deterministic, only term that depends on E.

• Distributed like eN(C+W ), for w 6= 0, P{W ≈ w} = e−N
2J(w),

C deterministic – essentially can be replaced by mean.

• For large β always best to choose E = E0, lose number of points

and gain in the first term above. =⇒ E∗ = E0.

• Optimize over q to find q∗.

16



Conditional models on bands – mixed case

• In the mixed case
(
HN,ν(x) =

∑
p≥2 γpHN,p(x)

)
,

HN,ν |q(x)
d
=
∑
p≥2

γpαp,0(q)HN,p(x0)

+

〈∑
p≥2

γpαp,1(q)∇HN,p(x0), x

〉

+
∑
p≥2

p∑
k=2

γpαp,k(q)H
(p)
N,k(x).

• Upon conditioning on

HN,ν(x0) =
∑
p≥2

γpHN,p(x0) = NE ,

∇HN,ν(x0) =
∑
p≥2

γp∇HN,p(x0) = 0,

non of the terms becomes deterministic. 17



Conditional models on bands – mixed case

• The weight of one band ≈ eN(C+W ),

C > 0 deterministic, for w 6= 0, P{W ≈ w} = e−NJ(w).

• However, there are exponentially many points if E < E0,

leading to a large deviation type problem.

• The optimal energy E∗ turns out to be strictly smaller than E0

and β dependent.

18



Disorder chaos – pure models



Disorder chaos

• Let H ′N(x) be an i.i.d. copy of HN(x) and for t ∈ (0, 1) set

HN,t(x) := (1− t)HN(x) +
√

2t − t2H ′N(x).

• Let x1 and x2 be independent samples from GN,β and GN,t,β.

• We say that disorder chaos occurs if

〈x1, x2〉
P
−→

N→∞
0.

Theorem (Chen–Hsieh–Hwang–Sheu ‘15)

Disorder chaos occurs for all spherical models and t ∈ (0, 1).
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Disorder chaos

• Now, consider tN = o(1) depending on N.

• Let x10(t), x20(t), ... be the critical points of HN,t(x)

Theorem (S.–Zeitouni ‘16)

There exists a random permutation σ : N → N such that for

fixed K , for any i < K :

1. Location hardly changes: ‖xi0 − x
σ(i)
0 (tN)‖ = o(1).

2. Change in value: HN,tN (x
σ(i)
0 (tN)) = HN(xi0) + ∆i ,

∆i := −NtNC +
√
NtN

H ′N(xi0)√
N

+ o(1) .

• Bands approximately remain at same position, weights change.
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Disorder chaos

∆i = −NtNC +
√
NtN

H ′N(xi0)√
N

+ o(1)

• For tN = c/N, for any i ≤ K , w.h.p. ∆i = O(1).

crt. vals.

of HN,tN (x)

crt. vals.

of HN(x)

• No disorder chaos.
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Disorder chaos

∆i = −NtNC +
√
NtN

H ′N(xi0)√
N

+ o(1)

• If tN = cN/N with cN →∞, for i ≤ K ,

NtNC �
∣∣∣∣√NtN

H ′N(xi0)√
N

∣∣∣∣ .
• But HN(x)

d
= HN,tN (x), not all points are washed away by shift.

crt. vals.

of HN,tN (x)

crt. vals.

of HN(x)

• Disorder chaos occurs.
22



Thank You!
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