Geometry and temperature chaos in some spherical spin glasses

Eliran Subag
Based on an ongoing work with Gerard Ben Arous and Ofer Zeitouni January 25, 2017

Weizmann Institute

Spherical spin glasses models

- Random Hamiltonians on the unit sphere $\mathbb{S}^{N} \subset \mathbb{R}^{N}, N \gg 1$.

Spherical spin glasses models

- Random Hamiltonians on the unit sphere $\mathbb{S}^{N} \subset \mathbb{R}^{N}, N \gg 1$.
- Pure p-spin models: Fix $p \geq 2$. Consider the homogeneous polynomial with i.i.d coefficients $J_{i_{1}, \ldots, i_{p}} \sim N(0,1)$,

$$
H_{N, p}(\mathbf{x})=\sqrt{N} \sum_{i_{1}, \ldots, i_{p}=1}^{N} J_{i_{1}, \ldots, i_{p}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{p}}, \quad \mathbf{x} \in \mathbb{S}^{N}
$$

Spherical spin glasses models

- Random Hamiltonians on the unit sphere $\mathbb{S}^{N} \subset \mathbb{R}^{N}, N \gg 1$.
- Pure p-spin models: Fix $p \geq 2$. Consider the homogeneous polynomial with i.i.d coefficients $J_{i_{1}, \ldots, i_{p}} \sim N(0,1)$,

$$
H_{N, p}(\mathbf{x})=\sqrt{N} \sum_{i_{1}, \ldots, i_{p}=1}^{N} J_{i_{1}, \ldots, i_{p}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{p}}, \quad \mathbf{x} \in \mathbb{S}^{N}
$$

- Mixed models: $\gamma_{p} \geq 0$ - real parameters, $\nu(t)=\sum_{p} \gamma_{p}^{2} t^{p}$.

$$
H_{N, \nu}(\mathbf{x})=\sum_{p} \gamma_{p} H_{N, p}(\mathbf{x}), \quad \mathbf{x} \in \mathbb{S}^{N}
$$

Spherical spin glasses models

- Random Hamiltonians on the unit sphere $\mathbb{S}^{N} \subset \mathbb{R}^{N}, N \gg 1$.
- Pure p-spin models: Fix $p \geq 2$. Consider the homogeneous polynomial with i.i.d coefficients $J_{i_{1}, \ldots, i_{p}} \sim N(0,1)$,

$$
H_{N, p}(\mathbf{x})=\sqrt{N} \sum_{i_{1}, \ldots, i_{p}=1}^{N} J_{i_{1}, \ldots, i_{p}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{p}}, \quad \mathbf{x} \in \mathbb{S}^{N}
$$

- Mixed models: $\gamma_{p} \geq 0$ - real parameters, $\nu(t)=\sum_{p} \gamma_{p}^{2} t^{p}$.

$$
H_{N, \nu}(\mathbf{x})=\sum_{p} \gamma_{p} H_{N, p}(\mathbf{x}), \quad \mathbf{x} \in \mathbb{S}^{N}
$$

- Covariance: $\mathbb{E}\left\{H_{N, \nu}(\mathbf{x}) H_{N, \nu}\left(\mathbf{x}^{\prime}\right)\right\}=N \nu\left(\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle\right)$.

The Gibbs measure - general results

Gibbs meas.: $\quad G_{N, \beta}(A)=\frac{1}{z_{N, \beta}} \int_{A} e^{\beta H_{N}(\mathbf{x})} d \mathbf{x}, \quad A \subset \mathbb{S}^{N}, \beta \geq 0$.
Partition function: $\quad Z_{N, \beta}=\int_{\mathbb{S}^{N}} e^{\beta H_{N}(\mathbf{x})} d \mathbf{x}$.

The Gibbs measure - general results

Gibbs meas.: $\quad G_{N, \beta}(A)=\frac{1}{Z_{N, \beta}} \int_{A} e^{\beta H_{N}(x)} d \mathbf{x}, \quad A \subset \mathbb{S}^{N}, \beta \geq 0$.
Partition function: $\quad Z_{N, \beta}=\int_{\mathbb{S}^{N}} e^{\beta H_{N}(x)} d \mathbf{x}$.
Ultrametricity: (Panchenko '13)

$$
\forall \epsilon>0: G_{N, \beta}^{\otimes 3}\left\{d\left(\mathbf{x}_{1}, \mathbf{x}_{3}\right) \leq d\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \vee d\left(\mathbf{x}_{2}, \mathbf{x}_{3}\right)+\epsilon\right\} \underset{N \rightarrow \infty}{P} 1 .
$$

The Gibbs measure - general results

Gibbs meas.: $\quad G_{N, \beta}(A)=\frac{1}{z_{N, \beta}} \int_{A} e^{\beta H_{N}(\mathrm{x})} d \mathbf{x}, \quad A \subset \mathbb{S}^{N}, \beta \geq 0$.
Partition function: $\quad Z_{N, \beta}=\int_{\mathbb{S}^{N}} e^{\beta H_{N}(x)} d \mathbf{x}$.
Ultrametricity: (Panchenko '13)

$$
\forall \epsilon>0: G_{N, \beta}^{\otimes 3}\left\{d\left(\mathbf{x}_{1}, \mathbf{x}_{3}\right) \leq d\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \vee d\left(\mathbf{x}_{2}, \mathbf{x}_{3}\right)+\epsilon\right\} \underset{N \rightarrow \infty}{P} 1 .
$$

Remark: any finite ultrametric space $\left\{x_{1}, \ldots, x_{k}\right\}$ can be represented by a tree.

The Gibbs measure - general results

Gibbs meas.: $\quad G_{N, \beta}(A)=\frac{1}{Z_{N, \beta}} \int_{A} e^{\beta H_{N}(x)} d \mathbf{x}, \quad A \subset \mathbb{S}^{N}, \beta \geq 0$.
Partition function: $\quad Z_{N, \beta}=\int_{\mathbb{S}^{N}} e^{\beta H_{N}(x)} d \mathbf{x}$.

Cluster decomposition: (Talagrand '10, Jagannath '14)
There exist disjoint random $A_{i} \subset \mathbb{S}^{N}$ such that:

1. $G_{N, \beta}\left\{\cup A_{i}\right\} \rightarrow 1$,
2. $\left\{G_{N, \beta}\left\{A_{i}\right\}\right\}_{i}$ converges in distribution to some $W_{i}>0$,
3. $\exists t_{i j}$ random, s.t conditional on $\mathbf{x}_{1} \in A_{i}, \mathbf{x}_{2} \in A_{j}$,

$$
G_{N, \beta}^{\otimes 2}\left\{\left|d\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)-t_{i j}\right|>\epsilon\right\} \rightarrow 0 .
$$

Critical points and the Gibbs measure, pure models

Critical points

Definition. $\mathbf{x} \in \mathbb{S}^{N}$ is critical if $\nabla H_{N}(\mathbf{x})=0$.

Critical points

Definition. $\mathbf{x} \in \mathbb{S}^{N}$ is critical if $\nabla H_{N}(\mathbf{x})=0$.
For $B \subset \mathbb{R}, \quad \operatorname{Crit}(B):=\#$ critical values of $H_{N}(\mathbf{x})$ in B.

Critical points

Theorem (Auffinger-Ben Arous-Černý '13)

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \log (\mathbb{E}\{\operatorname{Crit}(N B)\})=\sup _{x \in B} \Theta_{p}(x)
$$

Theorem (S. '15)

Critical points

Theorem (Auffinger-Ben Arous-Černý '13)

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \log (\mathbb{E}\{\operatorname{Crit}(N B)\})=\sup _{x \in B} \Theta_{p}(x)
$$

Theorem (S. '15)

$$
\text { For } B \subset\left(E_{\infty}, E_{0}\right), \quad \frac{\operatorname{Crit}(N B)}{\mathbb{E}\{\operatorname{Crit}(N B)\}} \longrightarrow 1, \quad \text { in prob. }
$$

Lemma (S. '15)

$B_{N} \subset\left(E_{\infty}, E_{0}\right),\left|B_{N}\right| \rightarrow 0 \Longrightarrow \mathbb{P}\left\{\left|\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle\right|>\epsilon\right\} \rightarrow 0$, if $\mathbf{x}_{1} \neq \mathbf{x}_{2}$ are random (unif.) crt. pts. such that $H_{N}\left(\mathbf{x}_{i}\right) \in N B_{N}$.

Theorem (S.-Zeitouni '16)

The critical values near $\mathbb{E} \max _{\mathbf{x}} H_{N}(\mathbf{x})$ converge to $\operatorname{PPP}\left(e^{c_{p} x} d x\right)$.

The Gibbs measure

- Fix some sequence $N^{-\frac{1}{2}} \ll t_{N} \ll 1$.
$q_{*}=q_{*}(\beta)$ explicit.
$\operatorname{Band}\left(\mathrm{x}_{0}\right):=\left\{\mathbf{x} \in \mathbb{S}^{N}: q_{*}-t_{N} \leq\left\langle\mathbf{x}, \mathrm{x}_{0}\right\rangle \leq q_{*}+t_{N}\right\}$.

The Gibbs measure

- Fix some sequence $N^{-\frac{1}{2}} \ll t_{N} \ll 1$.
$q_{*}=q_{*}(\beta)$ explicit.
Band $\left(\mathbf{x}_{0}\right):=\left\{\mathbf{x} \in \mathbb{S}^{N}: q_{*}-t_{N} \leq\left\langle\mathbf{x}, \mathbf{x}_{0}\right\rangle \leq q_{*}+t_{N}\right\}$.
- Enumerate the crt. pts. $x_{0}^{i}, i \geq 1$, in decreasing order:

$$
H_{N}\left(\mathrm{x}_{0}^{i}\right) \geq H_{N}\left(\mathrm{x}_{0}^{i+1}\right)
$$

The Gibbs measure

Theorem (S. '16)
For the pure model with $p \geq 3$ and large enough β,

The Gibbs measure

Theorem (S. '16)

For the pure model with $p \geq 3$ and large enough β,

1. Asymptotic support: $\forall \epsilon>0$, for large k, N,

$$
\mathbb{P}\left\{G_{N, \beta}\left(\cup_{i \leq k} \operatorname{Band}\left(\mathbf{x}_{0}^{i}\right)\right)>1-\epsilon\right\} \geq 1-\epsilon .
$$

The Gibbs measure

Theorem (S. '16)

For the pure model with $p \geq 3$ and large enough β,

1. Asymptotic support: $\forall \epsilon>0$, for large k, N,

$$
\mathbb{P}\left\{G_{N, \beta}\left(\cup_{i \leq k} \operatorname{Band}\left(\mathbf{x}_{0}^{i}\right)\right)>1-\epsilon\right\} \geq 1-\epsilon
$$

2. Suppose $\mathbf{x}_{1}, \mathbf{x}_{2}$ drawn independently from the Gibbs measure. Then, with probability going to 1 , for small $\epsilon>0$

$$
\begin{aligned}
\left|\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle\right|<\epsilon & \Longleftrightarrow \mathbf{x}_{1}, \mathbf{x}_{2} \in \text { different bands, } \\
\left|\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle-q_{*}^{2}\right|<\epsilon & \Longleftrightarrow \mathbf{x}_{1}, \mathbf{x}_{2} \in \text { same band. }
\end{aligned}
$$

Overlap distribution

- Given a sample $\mathbf{x} \in \operatorname{Band}\left(\mathbf{x}_{0}\right)$,

$$
\begin{gathered}
\mathbf{x} \approx q_{*} \mathbf{x}_{0}+\mathbf{x}^{\perp}, \\
\left\langle\mathbf{x}_{0}, \mathbf{x}^{\perp}\right\rangle=0 .
\end{gathered}
$$

Overlap distribution

- Given a sample $\mathbf{x} \in \operatorname{Band}\left(\mathbf{x}_{0}\right)$,

$$
\begin{gathered}
\mathbf{x} \approx q_{*} x_{0}+\mathbf{x}^{\perp}, \\
\left\langle\mathbf{x}_{0}, \mathbf{x}^{\perp}\right\rangle=0 .
\end{gathered}
$$

- For samples \mathbf{x}, \mathbf{y} w.h.p

$$
\begin{aligned}
\langle\mathbf{x}, \mathbf{y}\rangle & \approx\left\langle q_{*} \mathbf{x}_{0}, q_{*} \mathbf{y}_{0}\right\rangle \\
& =q_{*}^{2}\left\langle\mathbf{x}_{0}, \mathbf{y}_{0}\right\rangle .
\end{aligned}
$$

Overlap distribution

- Given a sample $\mathbf{x} \in \operatorname{Band}\left(\mathbf{x}_{0}\right)$,

$$
\begin{gathered}
\mathbf{x} \approx q_{*} x_{0}+\mathbf{x}^{\perp}, \\
\left\langle\mathbf{x}_{0}, \mathbf{x}^{\perp}\right\rangle=0 .
\end{gathered}
$$

- For samples \mathbf{x}, \mathbf{y} w.h.p

$$
\begin{aligned}
\langle\mathbf{x}, \mathbf{y}\rangle & \approx\left\langle q_{*} \mathbf{x}_{0}, q_{*} \mathbf{y}_{0}\right\rangle \\
& =q_{*}^{2}\left\langle\mathbf{x}_{0}, \mathbf{y}_{0}\right\rangle .
\end{aligned}
$$

- Recall: deep crt. pts. are orthogonal w.h.p. Thus,

$$
\left\langle\mathbf{x}_{0}, \mathbf{y}_{0}\right\rangle \approx 0 \text { or } 1
$$

Mixed models - work in progress (\w Ben Arous, Zeitouni)

- Reminder: $\quad H_{N, \nu}(\mathbf{x})=\sum_{p} \gamma_{p} H_{N, p}(\mathbf{x}), \quad \nu(x)=\sum \gamma_{p} x^{p}$.

Mixed models - work in progress (\w Ben Arous, Zeitouni)

- Reminder: $\quad H_{N, \nu}(\mathbf{x})=\sum_{p} \gamma_{p} H_{N, p}(\mathbf{x}), \quad \nu(x)=\sum \gamma_{p} x^{p}$.
- From now on assume ν close enough to pure:

$$
\left|\nu^{(4)}(1)-\nu_{p}^{(4)}(1)\right|<\delta, \quad \nu_{p}(x)=x^{p}
$$

- All the results about critical points hold as in the pure case.

Mixed models - work in progress (\w Ben Arous, Zeitouni)

- Reminder: $\quad H_{N, \nu}(\mathbf{x})=\sum_{p} \gamma_{p} H_{N, p}(\mathbf{x}), \quad \nu(x)=\sum \gamma_{p} x^{p}$.
- From now on assume ν close enough to pure:

$$
\left|\nu^{(4)}(1)-\nu_{p}^{(4)}(1)\right|<\delta, \quad \nu_{p}(x)=x^{p} .
$$

- All the results about critical points hold as in the pure case.
- For large β, the Gibbs measure $G_{N, \beta}$ concentrates on bands around critical points.

Mixed models - work in progress (\w Ben Arous, Zeitouni)

- Reminder: $\quad H_{N, \nu}(\mathbf{x})=\sum_{p} \gamma_{p} H_{N, p}(\mathbf{x}), \quad \nu(x)=\sum \gamma_{p} x^{p}$.
- From now on assume ν close enough to pure:

$$
\left|\nu^{(4)}(1)-\nu_{p}^{(4)}(1)\right|<\delta, \quad \nu_{p}(x)=x^{p} .
$$

- All the results about critical points hold as in the pure case.
- For large β, the Gibbs measure $G_{N, \beta}$ concentrates on bands around critical points.
- However, the relevant critical points depend on β !
- Compared to the pure case, more complicated structure on bands.

For two samples from the same band $\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle>q_{*}^{2}$.
But still, for points from different bands $\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle \approx 0$.

Temperature chaos

- Let $\beta_{1} \neq \beta_{2}$ be two inverse-temperatures.
- With the disorder $H_{N}(x)$ fixed, let x_{1} and x_{2} be independent samples from $G_{N, \beta_{1}}$ and $G_{N, \beta_{2}}$. (recall: $d G_{N, \beta} \propto e^{\beta H_{N}(\mathbf{x})} d \mathbf{x}$)

Temperature chaos

- Let $\beta_{1} \neq \beta_{2}$ be two inverse-temperatures.
- With the disorder $H_{N}(x)$ fixed, let x_{1} and x_{2} be independent samples from $G_{N, \beta_{1}}$ and $G_{N, \beta_{2}}$. (recall: $d G_{N, \beta} \propto e^{\beta H_{N}(\mathbf{x})} d \mathbf{x}$)

Temperature chaos

- Let $\beta_{1} \neq \beta_{2}$ be two inverse-temperatures.
- With the disorder $H_{N}(x)$ fixed, let x_{1} and x_{2} be independent samples from $G_{N, \beta_{1}}$ and $G_{N, \beta_{2}}$. (recall: $d G_{N, \beta} \propto e^{\beta H_{N}(\mathbf{x})} d \mathbf{x}$)
- We say that temperature chaos occurs if

$$
\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle \underset{N \rightarrow \infty}{P} 0 .
$$

Temperature chaos

- Let $\beta_{1} \neq \beta_{2}$ be two inverse-temperatures.
- With the disorder $H_{N}(x)$ fixed, let x_{1} and x_{2} be independent samples from $G_{N, \beta_{1}}$ and $G_{N, \beta_{2}}$. (recall: $d G_{N, \beta} \propto e^{\beta H_{N}(\mathbf{x})} d \mathbf{x}$)
- We say that temperature chaos occurs if

$$
\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle \underset{N \rightarrow \infty}{P} 0 .
$$

- Small change in temperature results in a drastic change of the Gibbs measure.

Temperature chaos

Theorem (Chen-Panchenko '16)
For even generic models (under some conditions) temperature chaos occurs.

Even: p odd $\Longrightarrow \gamma_{p}=0, \quad$ generic: $\sum p^{-1} \mathbf{1}\left\{\gamma_{p} \neq 0\right\}=\infty$.

Temperature chaos

Theorem (Chen-Panchenko '16)

For even generic models (under some conditions) temperature chaos occurs.

Even: p odd $\Longrightarrow \gamma_{p}=0, \quad$ generic: $\sum p^{-1} \mathbf{1}\left\{\gamma_{p} \neq 0\right\}=\infty$.
Theorem (Chen-Panchenko '16)
Let $p \geq 4$ even, $p^{\prime} \neq p, a \in\left(0, \frac{1}{4}\right)$. For

$$
H_{N}(\mathbf{x}):=H_{N, p}(\mathbf{x})+\frac{1}{N^{a}} H_{N, p^{\prime}}(\mathbf{x})
$$

temperature chaos occurs.

Temperature chaos

Theorem (Chen-Panchenko '16)

For even generic models (under some conditions) temperature chaos occurs.

Theorem (Chen-Panchenko '16)

Let $p \geq 4$ even, $p^{\prime} \neq p, a \in\left(0, \frac{1}{4}\right)$. For

$$
H_{N}(\mathbf{x}):=H_{N, p}(\mathrm{x})+\frac{1}{N^{a}} H_{N, p^{\prime}}(\mathrm{x})
$$

temperature chaos occurs.

Theorem (S. '16)

For the pure spherical models, $p \geq 3$, with β_{1}, β_{2} large enough, temperature chaos does not occur.

Temperature chaos

Theorem (S. '16)

For the pure spherical models, $\boldsymbol{p} \geq 3$, with β_{1}, β_{2} large enough, temperature chaos does not occur.

Sketch of proof. For large K, both $G_{N, \beta_{1}}$ and $G_{N, \beta_{2}}$ are essentially supported on the set of bands around $\mathbf{x}_{0}^{1}, \ldots, \mathbf{x}_{0}^{K}$ with $q_{*}\left(\beta_{1}\right) \neq q_{*}\left(\beta_{2}\right)$.

As before, if $\mathbf{x} \in \operatorname{Band}_{\beta_{1}}\left(\mathbf{x}_{0}^{i}\right), \mathbf{x}^{\prime} \in \operatorname{Band}_{\beta_{2}}\left(\mathrm{x}_{0}^{j}\right)$, then

$$
\begin{gathered}
\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle \approx q_{*}\left(\beta_{1}\right) q_{*}\left(\beta_{2}\right)\left\langle\mathbf{x}_{0}^{i}, \mathbf{x}_{0}^{j}\right\rangle . \\
\Longrightarrow G_{N, \beta_{1}} \times G_{N, \beta_{2}}\left\{\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle \approx q_{*}\left(\beta_{1}\right) q_{*}\left(\beta_{2}\right)\right\} \\
=\sum_{i} G_{N, \beta_{1}}\left(\operatorname{Band}_{\beta_{1}}\left(\mathbf{x}_{0}^{i}\right)\right) G_{N, \beta_{2}}\left(\operatorname{Band}_{\beta_{2}}\left(\mathbf{x}_{0}^{i}\right)\right) .
\end{gathered}
$$

Temperature chaos

On the other hand, for the mixed models (close to pure), the critical points $G_{N, \beta_{1}}$ and $G_{N, \beta_{2}}$ are supported correspond to different heights $N E_{*}^{\beta_{1}}$ and $N E_{*}^{\beta_{2}}$ of the Hamiltonian and they are orthogonal.

Therefore, typically for two samples $\mathbf{x} \in \operatorname{Band}_{\beta_{1}}\left(\mathbf{x}_{0}^{i}\right), \mathbf{x}^{\prime} \in \operatorname{Band}_{\beta_{2}}\left(\mathbf{x}_{0}^{j}\right)$,

$$
\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle \approx 0
$$

and temperature chaos occurs.

Conditional models on bands

- The Gibbs measure $d G_{N, \beta} \propto e^{\beta H_{N}(\mathbf{x})} d \mathbf{x}$ mainly charges high values of $H_{N}(\mathbf{x})$.

Conditional models on bands

- The Gibbs measure $d G_{N, \beta} \propto e^{\beta H_{N}(\mathbf{x})} d \mathbf{x}$ mainly charges high values of $H_{N}(\mathbf{x})$.
- For an explicit $E_{t}=E_{t}(\beta)$, w.h.p. $\left\{\mathbf{x}: H_{N}(\mathbf{x})<N E_{t}\right\}$ has negligible meas.

Conditional models on bands

- The Gibbs measure $d G_{N, \beta} \propto e^{\beta H_{N}(\mathbf{x})} d \mathbf{x}$ mainly charges high values of $H_{N}(\mathbf{x})$.
- For an explicit $E_{t}=E_{t}(\beta)$, w.h.p. $\left\{\mathbf{x}: H_{N}(\mathbf{x})<N E_{t}\right\}$ has negligible meas.
- The complement is covered by nbhds

$$
\begin{aligned}
& \qquad\left\{\mathbf{x}:\left\langle\mathbf{x}, \mathbf{x}_{0}\right\rangle \geq q_{t}\right\} \\
& \text { of critical pts } \mathbf{x}_{0} \text { with } H_{N}\left(\mathbf{x}_{0}\right) \geq N E_{t} .
\end{aligned}
$$

Conditional models on bands

- The Gibbs measure $d G_{N, \beta} \propto e^{\beta H_{N}(x)} d \mathbf{x}$ mainly charges high values of $H_{N}(\mathbf{x})$.
- For an explicit $E_{t}=E_{t}(\beta)$, w.h.p. $\left\{\mathbf{x}: H_{N}(\mathbf{x})<N E_{t}\right\}$ has negligible meas.
- The complement is covered by nbhds

$$
\left\{\mathbf{x}:\left\langle\mathbf{x}, \mathbf{x}_{0}\right\rangle \geq q_{t}\right\}
$$

of critical pts \mathbf{x}_{0} with $H_{N}\left(\mathbf{x}_{0}\right) \geq N E_{t}$.

- The latter set is covered by the union, going over all heights $E>E_{t}$ and 'overlaps' $q \in\left(q_{t}, 1\right)$, of the bands:

$$
\operatorname{Band}\left(\mathbf{x}_{0}, q\right):=\left\{\mathbf{x}:\left\langle\mathbf{x}, \mathbf{x}_{0}\right\rangle \approx q\right\}, \quad \mathbf{x}_{0} \text { crit., } \quad H_{N}\left(\mathbf{x}_{0}\right) \approx N E .
$$

Conditional models on bands

- The Gibbs measure $d G_{N, \beta} \propto e^{\beta H_{N}(\mathbf{x})} d \mathbf{x}$ mainly charges high values of $H_{N}(\mathbf{x})$.
- For an explicit $E_{t}=E_{t}(\beta)$, w.h.p. $\left\{\mathbf{x}: H_{N}(\mathbf{x})<N E_{t}\right\}$ has negligible meas.
- The complement is covered by nbhds

$$
\left\{\mathbf{x}:\left\langle\mathbf{x}, \mathbf{x}_{0}\right\rangle \geq q_{t}\right\}
$$

of critical pts \mathbf{x}_{0} with $H_{N}\left(\mathbf{x}_{0}\right) \geq N E_{t}$.

- The latter set is covered by the union, going over all heights $E>E_{t}$ and 'overlaps' $q \in\left(q_{t}, 1\right)$, of the bands:

$$
\operatorname{Band}\left(\mathbf{x}_{0}, q\right):=\left\{\mathbf{x}:\left\langle\mathbf{x}, \mathbf{x}_{0}\right\rangle \approx q\right\}, \quad \mathbf{x}_{0} \text { crit., } \quad H_{N}\left(\mathbf{x}_{0}\right) \approx N E .
$$

- To prove that $G_{N, \beta}$ concentrates on bands, we show that the weight of those bands is maximized at log. scale for specific E_{*}, q_{*}.

Conditional models on bands

For given height E and 'overlap' q :

- Number of bands $\approx \exp \left\{N \Theta_{\nu}(E)\right\}$.
- Each band has volume $\approx\left(1-q^{2}\right)^{\frac{N}{2}}$.
- For each critical \mathbf{x}_{0}, associate the weight

$$
\int e^{\beta H_{N} \mid q(\mathbf{x})} d \mathbf{x}
$$

where

$$
\left.H_{N}\right|_{q}: \mathbb{S}^{N-1} \rightarrow \mathbb{R},\left.\quad H_{N}\right|_{q}(\mathbf{x})=H_{N} \circ f(\mathbf{x})
$$

is the restriction of H_{N} to the sub-sphere $\left\{\mathbf{x}:\left\langle\mathbf{x}, \mathbf{x}_{0}\right\rangle=q\right\}$, up to a change of coordinates.

Conditional models on bands

For given height E and 'overlap' q :

- Number of bands $\approx \exp \left\{N \Theta_{\nu}(E)\right\}$.
- Each band has volume $\approx\left(1-q^{2}\right)^{\frac{N}{2}}$.
- For each critical \mathbf{x}_{0}, associate the weight

$$
\int e^{\beta H_{N} \mid q(\mathbf{x})} d \mathbf{x}
$$

where

$$
\left.H_{N}\right|_{q}: \mathbb{S}^{N-1} \rightarrow \mathbb{R},\left.\quad H_{N}\right|_{q}(\mathbf{x})=H_{N} \circ f(\mathbf{x})
$$

is the restriction of H_{N} to the sub-sphere $\left\{\mathbf{x}:\left\langle\mathbf{x}, \mathbf{x}_{0}\right\rangle=q\right\}$, up to a change of coordinates.

Simplification: assume those weights are i.i.d., with law obtained from conditioning on $\nabla H_{N}\left(\mathrm{x}_{0}\right)=0, H_{N}\left(\mathrm{x}_{0}\right)=N E$.

Conditional models on bands - pure case

- For the pure p-spin model,

$$
\begin{aligned}
\left.H_{N, p}\right|_{q}(\mathbf{x}) & \stackrel{d}{=} \alpha_{p, 0}(q) H_{N, p}\left(\mathbf{x}_{0}\right) \\
& +\alpha_{p, 1}(q)\left\langle\nabla H_{N, p}\left(\mathbf{x}_{0}\right), \mathbf{x}\right\rangle \\
& +\sum_{k=2}^{p} \alpha_{p, k}(q) H_{N, k}^{(p)}(\mathbf{x}),
\end{aligned}
$$

$H_{N, k}^{(p)}$ are copies of pure k-spin models, $\alpha_{p, k}(q) \in \mathbb{R}$ explicit, all summands are independent.

- Upon conditioning on $H_{N, p}\left(\mathrm{x}_{0}\right)=N E, \nabla H_{N, p}\left(\mathrm{x}_{0}\right)=0$,

$$
\left.H_{N, p}\right|_{q}(\mathbf{x}) \stackrel{d}{=} \alpha_{p, 0}(q) N E+\sum_{k=2}^{p} \alpha_{p, k}(q) H_{N, k}^{(p)}(\mathbf{x})
$$

Conditional models on bands - pure case

$$
\left.H_{N, p}\right|_{q}(\mathbf{x}) \stackrel{d}{=} \alpha_{p, 0}(q) N E+\sum_{k=2}^{p} \alpha_{p, k}(q) H_{N, k}^{(p)}(\mathbf{x})
$$

- The weight corresponding to a single band is

$$
\int e^{\left.\beta H_{N, p}\right|_{q}(\mathbf{x})} d \mathbf{x}=e^{N \alpha_{p, 0}(q) \beta E} \int e^{\beta \sum_{k=2}^{p} \alpha_{p, k}(q) H_{N, k}^{(p)}(\mathrm{x})} d \mathbf{x}
$$

- Deterministic, only term that depends on E.
- Distributed like $e^{N(C+W)}$, for $w \neq 0, \mathbb{P}\{W \approx w\}=e^{-N^{2} J(w)}$,
C deterministic - essentially can be replaced by mean.
- For large β always best to choose $E=E_{0}$, lose number of points and gain in the first term above. $\Longrightarrow E_{*}=E_{0}$.
- Optimize over q to find q_{*}.

Conditional models on bands - mixed case

- In the mixed case $\left(H_{N, \nu}(\mathbf{x})=\sum_{p \geq 2} \gamma_{p} H_{N, p}(\mathbf{x})\right)$,

$$
\begin{aligned}
\left.H_{N, \nu}\right|_{q}(\mathbf{x}) & \stackrel{d}{=} \sum_{p \geq 2} \gamma_{p} \alpha_{p, 0}(q) H_{N, p}\left(\mathbf{x}_{0}\right) \\
& +\left\langle\sum_{p \geq 2} \gamma_{p} \alpha_{p, 1}(q) \nabla H_{N, p}\left(\mathbf{x}_{0}\right), \mathbf{x}\right\rangle \\
& +\sum_{p \geq 2} \sum_{k=2}^{p} \gamma_{p} \alpha_{p, k}(q) H_{N, k}^{(p)}(\mathbf{x}) .
\end{aligned}
$$

- Upon conditioning on

$$
\begin{aligned}
H_{N, \nu}\left(\mathbf{x}_{0}\right) & =\sum_{p \geq 2} \gamma_{p} H_{N, p}\left(\mathbf{x}_{0}\right)=N E, \\
\nabla H_{N, \nu}\left(\mathbf{x}_{0}\right) & =\sum_{p \geq 2} \gamma_{p} \nabla H_{N, p}\left(\mathbf{x}_{0}\right)=0,
\end{aligned}
$$

non of the terms becomes deterministic.

Conditional models on bands - mixed case

- The weight of one band $\approx e^{N(C+W)}$,
$C>0$ deterministic, for $w \neq 0, \mathbb{P}\{W \approx w\}=e^{-N J(w)}$.
- However, there are exponentially many points if $E<E_{0}$, leading to a large deviation type problem.
- The optimal energy E_{*} turns out to be strictly smaller than E_{0} and β dependent.

Disorder chaos - pure models

Disorder chaos

- Let $H_{N}^{\prime}(\mathbf{x})$ be an i.i.d. copy of $H_{N}(\mathbf{x})$ and for $t \in(0,1)$ set

$$
H_{N, t}(\mathbf{x}):=(1-t) H_{N}(\mathbf{x})+\sqrt{2 t-t^{2}} H_{N}^{\prime}(\mathbf{x})
$$

- Let x_{1} and x_{2} be independent samples from $G_{N, \beta}$ and $G_{N, t, \beta}$.

Disorder chaos

- Let $H_{N}^{\prime}(\mathbf{x})$ be an i.i.d. copy of $H_{N}(\mathbf{x})$ and for $t \in(0,1)$ set

$$
H_{N, t}(\mathbf{x}):=(1-t) H_{N}(\mathbf{x})+\sqrt{2 t-t^{2}} H_{N}^{\prime}(\mathbf{x})
$$

- Let x_{1} and x_{2} be independent samples from $G_{N, \beta}$ and $G_{N, t, \beta}$.

Disorder chaos

- Let $H_{N}^{\prime}(\mathbf{x})$ be an i.i.d. copy of $H_{N}(\mathbf{x})$ and for $t \in(0,1)$ set

$$
H_{N, t}(\mathbf{x}):=(1-t) H_{N}(\mathbf{x})+\sqrt{2 t-t^{2}} H_{N}^{\prime}(\mathbf{x})
$$

- Let x_{1} and x_{2} be independent samples from $G_{N, \beta}$ and $G_{N, t, \beta}$.
- We say that disorder chaos occurs if

$$
\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle \underset{N \rightarrow \infty}{P} 0 .
$$

Disorder chaos

- Let $H_{N}^{\prime}(\mathbf{x})$ be an i.i.d. copy of $H_{N}(\mathbf{x})$ and for $t \in(0,1)$ set

$$
H_{N, t}(\mathbf{x}):=(1-t) H_{N}(\mathbf{x})+\sqrt{2 t-t^{2}} H_{N}^{\prime}(\mathbf{x})
$$

- Let x_{1} and x_{2} be independent samples from $G_{N, \beta}$ and $G_{N, t, \beta}$.
- We say that disorder chaos occurs if

$$
\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle \xrightarrow[N \rightarrow \infty]{P} 0 .
$$

Theorem (Chen-Hsieh-Hwang-Sheu '15)
Disorder chaos occurs for all spherical models and $t \in(0,1)$.

Disorder chaos

- Now, consider $t_{N}=o(1)$ depending on N.

Disorder chaos

- Now, consider $t_{N}=o(1)$ depending on N.
- Let $\mathbf{x}_{0}^{1}(t), \mathbf{x}_{0}^{2}(t), \ldots$ be the critical points of $H_{N, t}(\mathbf{x})$

Disorder chaos

- Now, consider $t_{N}=o(1)$ depending on N.
- Let $\mathbf{x}_{0}^{1}(t), \mathbf{x}_{0}^{2}(t), \ldots$ be the critical points of $H_{N, t}(\mathbf{x})$

Theorem (S.-Zeitouni '16)

There exists a random permutation $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ such that for fixed K, for any $i<K$:

1. Location hardly changes: $\quad\left\|\mathbf{x}_{0}^{i}-\mathbf{x}_{0}^{\sigma(i)}\left(t_{N}\right)\right\|=o(1)$.
2. Change in value:

$$
H_{N, t_{N}}\left(\mathbf{x}_{0}^{\sigma(i)}\left(t_{N}\right)\right)=H_{N}\left(\mathbf{x}_{0}^{i}\right)+\Delta_{i}
$$

$$
\Delta_{i}:=-N t_{N} C+\sqrt{N t_{N}} \frac{H_{N}^{\prime}\left(x_{0}^{i}\right)}{\sqrt{N}}+o(1)
$$

Disorder chaos

- Now, consider $t_{N}=o(1)$ depending on N.
- Let $\mathbf{x}_{0}^{1}(t), \mathbf{x}_{0}^{2}(t), \ldots$ be the critical points of $H_{N, t}(\mathbf{x})$

Theorem (S.-Zeitouni '16)

There exists a random permutation $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ such that for fixed K, for any $i<K$:

1. Location hardly changes: $\quad\left\|\mathbf{x}_{0}^{i}-\mathbf{x}_{0}^{\sigma(i)}\left(t_{N}\right)\right\|=o(1)$.
2. Change in value: $\quad H_{N, t_{N}}\left(\mathbf{x}_{0}^{\sigma(i)}\left(t_{N}\right)\right)=H_{N}\left(\mathbf{x}_{0}^{i}\right)+\Delta_{i}$,

$$
\Delta_{i}:=-N t_{N} C+\sqrt{N t_{N}} \frac{H_{N}^{\prime}\left(x_{0}^{i}\right)}{\sqrt{N}}+o(1)
$$

- Bands approximately remain at same position, weights change.

Disorder chaos

$$
\Delta_{i}=-N t_{N} C+\sqrt{N t_{N}} \frac{H_{N}^{\prime}\left(\mathbf{x}_{0}^{i}\right)}{\sqrt{N}}+o(1)
$$

- For $t_{N}=c / N$, for any $i \leq K$, w.h.p. $\quad \Delta_{i}=O(1)$.

Disorder chaos

$$
\Delta_{i}=-N t_{N} C+\sqrt{N t_{N}} \frac{H_{N}^{\prime}\left(x_{0}^{j}\right)}{\sqrt{N}}+o(1)
$$

- For $t_{N}=c / N$, for any $i \leq K$, w.h.p. $\quad \Delta_{i}=O(1)$.

Disorder chaos

$$
\Delta_{i}=-N t_{N} C+\sqrt{N t_{N}} \frac{H_{N}^{\prime}\left(x_{0}^{j}\right)}{\sqrt{N}}+o(1)
$$

- For $t_{N}=c / N$, for any $i \leq K$, w.h.p. $\quad \Delta_{i}=O(1)$.

- No disorder chaos.

Disorder chaos

$$
\Delta_{i}=-N t_{N} C+\sqrt{N t_{N}} \frac{H_{N}^{\prime}\left(x_{0}^{i}\right)}{\sqrt{N}}+o(1)
$$

- If $t_{N}=c_{N} / N$ with $c_{N} \rightarrow \infty$, for $i \leq K$,

$$
N t_{N} C \gg\left|\sqrt{N t_{N}} \frac{H_{N}^{\prime}\left(\mathrm{x}_{0}^{i}\right)}{\sqrt{N}}\right| .
$$

- But $H_{N}(\mathbf{x}) \stackrel{d}{=} H_{N, t_{N}}(\mathbf{x})$, not all points are washed away by shift.

- Disorder chaos occurs.

Thank You!

