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Random regular graph

GN,d is the set of d-regular graphs on N vertices (without loops and multiedges).

The random regular graph is the uniform probability measure on GN,d .
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Adjacency matrix Aij
..= 1i∼j . Trivial eigenvalue d .

Normalized adjacency matrix H ..= A/
√
d − 1.

Focus in this talk: d fixed (large) and N →∞. (Earlier results for d > (logN)4.)



Background: Kesten–McKay law

For d > 3 fixed, asymptotically almost surely as N →∞,
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j

δλj −→ ρKMd (x) :=

(
1 +

1
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− x2

d

)−1√
[4− x2]+

2π
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Weak convergence (η fixed).



Background: Numerical evidence for random matrix statistics

Numerical evidence that local eigenvalue statistics of random regular graphs are
governed by Gaussian Orthogonal Ensemble (GOE).

Eigenvalue gaps for random 3-regular graphs on 2000
vertices (figure from Jakobson–Miller–Rivin–Rudnick)

Second largest eigenvalue of random 3-regular
graphs (figure from Sarnak, What is an Expander)

Numerical results: Jakobson–Miller–Rivin–Rudnick; Newland–Terras; Oren–Smilansky.

Extensive predictions: Smilansky et al.

Results for d ∈ [Nε,N2/3−ε]: Bauerschmidt–Huang–Knowles–Yau (eigenvalue gaps).



Background: Eigenvector delocalization

Random regular graphs have only nonlocalized eigenvectors (with high
probability). For example, all eigenvectors v obey

‖v‖∞ = O

(
1

(logN)c

)
.

Stronger results are also known, and such estimates actually hold for regular
graphs under the deterministic assumption of local tree-like structure (later).

References: Brooks–Lindenstrauss, Dumitriu–Pal, Geisinger.

The eigenvectors v of the GOE are uniform on the sphere and therefore (whp)

‖v‖∞ = O

(√
logN

N

)
.

Similar estimates are now also known for much more general random matrices.



Example result: Eigenvector delocalization

Background: the eigenvectors v of the GOE satisfy (whp)

‖v‖∞ = O

(√
logN

N

)
.

Theorem (Bauerschmidt–Huang–Yau 2016)

Fix d > 1040. Then the eigenvectors v of a random d-regular graph satisfy (whp)

‖v‖∞ = O

(
(logN)100

√
N

)
,

simultaneously for all eigenvectors v with eigenvalues |λ| < 2
√
d − 1− ε.



Preliminaries: Green’s function

Green’s function (resolvent): Gij(z) = (H − z)−1
ij for z ∈ C+ = {Im z > 0}.

Spectral density:

Im Tr(G (E + iη))

N
=

Eηλi

Eigenvectors: if Hv = Ev then

‖v‖∞ 6
√
ηmax

i
ImGii (E + iη) for any η > 0.

We are interested in z = E + iη close to the spectrum: η ≈ 1/N.
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Preliminaries: Local geometric structure of random regular graph

In a random d-regular graph, up to radius R = c logd N, with high probability:

Most R-balls have no cycles. All R-balls have few cycles.



Preliminaries: Green’s function on the infinite regular tree

Let G (z) = (A/
√
d − 1− z)−1 be the Green’s function of the d-regular tree;

and G (i)(z) be that the graph from which vertex i is removed.

Gii (z) = −

z +
1

d − 1

∑
j∈∂i

G
(i)
jj (z)

−1

G
(i)
jj (z) = −

z +
1
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∑
k∈∂j\i

G
(j)
kk (z)

−1

i

jk

Since G
(i)
jj (z) is independent of i ∼ j , the second equation closes:

G
(i)
jj (z) = msc(z), where msc(z) = −

(
z + msc(z)

)−1

,

and

Gii (z) = md(z), where md(z) = −
(

1 +
d

d − 1
msc(z)

)−1

.
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Preliminaries: Kesten–McKay law

Locally tree-like structure → Kesten–McKay law: For z ∈ C+ fixed,

1

N
Tr(G (z))→ md(z).

Equivalent:

1

N

∑
j

δλj −→ ρKMd (x) :=

(
1 +

1

d − 1
− x2

d

)−1√
[4− x2]+

2π
.
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Preliminaries: Green’s function on the infinite regular tree

For the infinite tree, the off-diagonal elements can be computed in the same way:

Gij(z) = md(z)

(
− msc(z)√

d − 1

)dist(i,j)

.

Here |msc(z)| 6 1 and |md(z)| 6 1 + O(1/d) uniformly in z ∈ C+. In particular,
the Green’s function decays exponentially and is approximately given by

Gij(z) ≈ (d − 1)−dist(i,j)/2.



Preliminaries: Local semicircle law

For random Wigner matrices (i.i.d. entries):

Semicircle law (Wigner): For z ∈ C+ fixed (whp)

1

N
Tr(G (z))→ msc(z).

Local semicircle law (Erdős–Schlein–Yau): For Im z � 1/N (whp)

max
i
|Gii (z)−msc(z)| � 1. (+)

(+) implies for example that any eigenvector v satisfies

‖v‖∞ 6
√

(Im z)(msc(z) + o(1)) ≈ 1√
N

and that spectral density is concentrated on scale � 1. Such estimates are
fundamental in understanding local statistics (Erdős–Schlein–Yau; Tao–Vu).

(+) is not true for random d-regular graphs with fixed d (even with msc  md).



Local and global structure

General intuition:

Random regular graphs are locally given by (almost deterministic) tree-like
graphs which are glued together randomly.

The local structure is given by tree-like neighborhoods.

Our proof uses that the tree-like structure is valid for
radii ` ≈ logd logN.

For d � logN, we only need ` = 1: this is the
constraint that each vertex has exactly d neighbors.

The boundaries of such neighborhoods have � logN
edges. This permits the use of concentration estimates.

The global structure is partially captured by invariance
(reversibility) under switching dynamics.



Definition: tree extension

Recall: most neighborhoods in a random regular graph look locally like a
regular tree, but some neighborhoods can have a bounded number of cycles.

We condition on a large ball T = B`(1,G) of radius ` = c logd logN that has
only a bounded number of cycles. Its boundary has size Ω(logN)c .



Definition: tree extension

We replace the graph outside the ball by infinite trees attached to the
boundary. We call this graph the tree extension or TE(T ).

Thus TE(T ) is an infinite graph for which we understand the Green’s function
very well (expanding the bounded number of cycles about a tree graph).



Main result

Let Er (i , j ,G) be the union of all paths i → j of length at most r = c logd logN.

i j

Theorem (Bauerschmidt–Huang–Yau 2016)

Fix d > 1040. Then simultaneously for all z ∈ C with Im z > N−1(logN)200 and
|z ± 2| > 1/(logN), and simultaneously for all i , j ∈ [[N]], with high probability,

Gij(G; z) = Gij(TE(Er (i , j ,G); z)︸ ︷︷ ︸
Pij (Er (i,j,G);z)

+O((logN)−C ).

Implies `∞ eigenvector delocalization and local Kesten–McKay law.



Initial estimates for Im z = Ω(1).

For z far from the spectrum, the random walk picture for Gij(z) is valid.

Gij(G)− Pij(T ) =

j

i

Decay. For z away from the spectrum, Gij(z) decays exponentially in dist(i , j)
with rate at least Im z : relevant walks are of length less than 1/ Im z .

Geometry. Locally tree-like structure implies (deterministically) that most
pairs of vertices on the boundary are far from each other.



Multiscale approach for Im z � 1.

For Im z � 1 the random walk expansion would be highly oscillatory and
involve very long paths which we cannot control. Thus we do not use it.

Gij(G)− Pij(T ) =

j

i

Multiscale approach. Use estimates for some z ∈ C+ to get same estimates
for z − εi with slightly lower probability, say ε = N−3. Iterate to Im z ≈ 1/N.

The main difficulty is to get this improvement.



Boundary resampling

`

1

Condition on B`(1,G).

Pair boundary edges of
ball with random edges
from graph.

Call this pairing the
resampling data S.

The (simultaneous) switching of all pairs that do not collide with other pairs is
measure preserving and actually reversible.

This defines the switched graph G̃ = TS(G).

Outer boundary vertices of B`(1, G̃) are random under the randomness of S.
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Use of randomness of boundary resampling

We use the randomness of the boundary in the switched graph to obtain two key
estimates for the switched graph.

(a) Improved decay of the Green’s
function between most pairs of
distinct boundary vertices.

(b) Concentration of a certain average
of the diagonal elements Green’s
function over the boundary.

These estimates ultimately allow us to
obtain a more precise expansion of the
Green’s function in the interior and
advance the iteration.

`

1



Use of randomness (a): Improved decay estimate

For the tree and the tree extensions, we have Pij(z) ≈ (d − 1)−d(i,j)/2.

Our goal is to prove that the tree extension is accurate up to distance r .

For distances > r , we do not have an estimate better than (d − 1)−r/2.

Problem:

There are ≈ (d − 1)2` = (d − 1)r pairs of boundary vertices.

Even if all paths between these pairs are much longer than r , the previous
estimate is not sufficient to bound their contribution.

Upshot:

We need a better estimate for the Green’s function between distinct boundary
vertices. We obtain these using that the boundary is essentially random.



Use of randomness (a): Improved decay estimate

Example. Fix a vertex x . Assume ImGxx(z) 6 2 and Im z � (logN)200/N. Then

1

N

N∑
b=1

|Gxb(z)|2 =
ImGxx(z)

N Im z
� (logN)−200.

Let b1, . . . , bµ be independent uniformly random vertices, with say µ = (logN)5,
independent of the graph. Then (Markov’s inequality and union bound)

|Gxbi | 6 M(logN)−100� d−3r/2, M = (logN)2

holds for all but at most ω′ = logN indices i with probability at least(
µ

ω′

)
M−2ω′

� N−c log log N .

Upshot:

If the boundary ∂B`(1,G) was independent of the remainder of G, the Green’s
function between most pairs of vertices would have to be very small.



Use of randomness (b): Concentration estimate

`

1

a1

l1

T

There are µ boundary edges l1a1, . . . , lµaµ in
original graph G.

In the switched graph G̃, the new boundary
edges have random endpoints conditioned on G.

Pretend the boundary edges are uniformly
random independently of G.

Then

1

µ

µ∑
k=1

G (lk )
akak is the average of µ� logN independent random variables.

Thus it concentrates near its mean

Q(G) =
1

Nd

∑
i∼j

G
(i)
jj (G).

For the infinite tree, recall that G
(i)
jj (z) = msc(z) solves m2

sc + zmsc + 1 = 0.



Use of randomness (b): Concentration estimate

`

1

a1

l1

T

But the boundary edges are of course not
independent in G.

In the switched graph G̃ the new boundary
vertices are random and independent
conditioned on G.

Remove conditioned neighborhood T to
remove correlations.

Proposition

Conditioned on G, with high probability in the resampling data,

1

µ

µ∑
k=1

(
Gãk ãk (G̃(T))− Pãk ãk (Er (ãk , ãk , G̃(T)))

)
≈ Q(G̃)−msc



Self-consistent estimate

By resolvent expansion and the decay estimates to bound off-diagonal terms:

G̃11 − P̃11 =
1

d − 1

∑
k∈[[1,µ]]

P̃2
1lk (G̃

(T)
ãk ãk
− P̃

(T)
ãk ãk

) + O
(
d−(r+`+2)/2

)
.

If 1 has a tree neighborhood, explicitly P̃11 = md and P̃1lk = m2
dm

2`
sc /(d − 1)`.

Use the concentration estimate to replace the sum above:

G̃11 − P11 = m2
dm

2`
sc

d

d − 1
(Q(G̃)−msc) + error.

Similar (somewhat less explicit) estimates hold if the neighborhood of 1 is not
a tree but has (few) cycles.

Using reversibility this estimate can be pulled back from the switched graph
to the original graph. Analogous estimates hold for all other vertices.

These implies a self-consistent estimate for the averaged quantity Q(G)−msc .

This estimate implies the improved estimates for the Green’s function.



Induction (simplified)

Let Ω(z) ⊂ GN,d is a set of graphs which have locally tree-like structure and
satisfy the estimate of the main theorem:

|Gij(G; z)− Pij(G; z)| 6 d−r/2.

Initial estimates imply that

P

 ⋂
|z|>2d

Ω(z)

 = 1− o(N−ω+δ).

Let Ω−(z) ⊂ GN,d be the set of graphs with a slightly improved bound:

|Gij(G; z)− Pij(G; z)| 6 1

2
d−r/2.

Lipschitz continuity of Green’s function implies that Ω−(z) ⊂ Ω(z − i/N3).

Thus it suffices to prove that P(Ω(z) \ Ω−(z))� N−3 say.



Induction (simplified)

Fix a radius for the local resampling r = c logd logN and a center vertex, say 1.

Define the set Ω′1(z) of graphs satisfying improved estimates near 1:

G1x(G; z) = P1x(G; z) + (...) + O(d−(r+1)/2), (...)

Proposition

For any graph G ∈ Ω(z), with high probability
the switched graph is improved near 1:

P
[
TS(G) ∈ Ω′1(z)

∣∣∣ G] = 1− O(N−D).

Reversibility of switchings implies that P(Ω(z) \ Ω′1(z)) = o(N−ω+δ).

Union bounds give P(Ω−(z)) = 1− o(N−ω+7+δ).



Conclusion

Random matrix type delocalization estimates for eigenvectors and control of
spectral density on all mesoscopic scales for bounded degree regular graphs.

Simultaneous use of local graph structure and global randomness.

Method is robust.

Many interesting questions remain.


