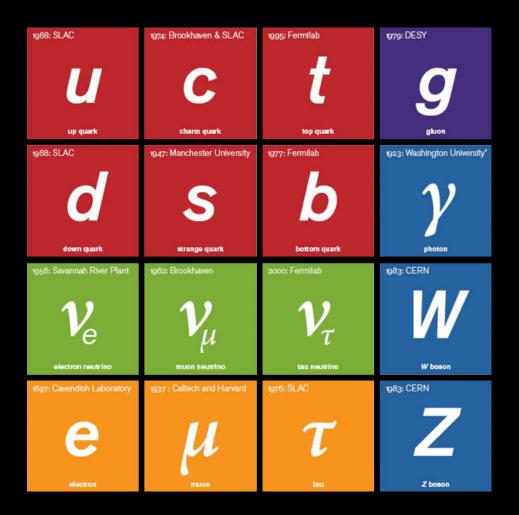

# Discussion: Focus of Next-Generation Experiments John Beacom, The Ohio State University






The Ohio State University's Center for Cosmology and AstroParticle Physics



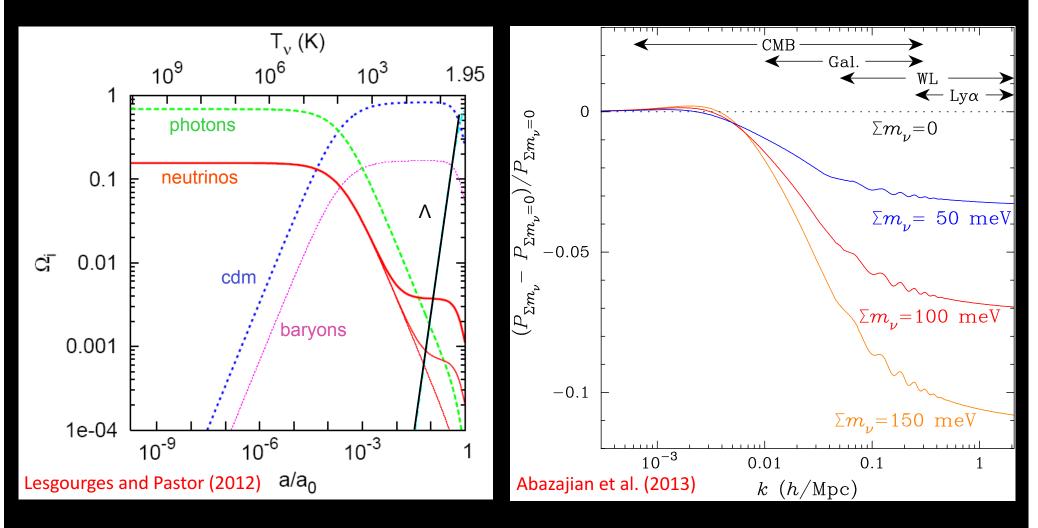
## Neutrinos — What's So Special?

2

## Neutrinos – In the Laboratory



#### **Interactions** are feeble


## Masses are infinitesimal

**Decays** are suppressed

Mixing is large

3

## Neutrinos – In Cosmology



Important part of radiation

#### Important part of dark matter

## Neutrinos – In Astronomy

Initial energies, not reduced by thermalizationNeutrinos<br/>reveal:original timescales, not delayed by diffusion

distant sources, not attenuated en route

deep insides of sources, not the outsides

source directions, not blurred by deflection

The only thing is that neutrino signal detection is hard

# The Neutrino LCA-PCA Mixing Matrix

| Goals<br>Methods          | Particle<br>Physics                                                      | Cosmological<br>Physics                                         | Astro-<br>Physics                                                   |
|---------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|
| Neutrinos –<br>Laboratory | measure<br>neutrino<br>properties,<br>interactions                       | predict<br>neutrino<br>cosmic<br>constituents,<br>clustering    | predict effects<br>on astro<br>neutrino<br>emission,<br>propagation |
| Neutrino<br>Cosmology     | test for new<br>particle<br>properties,<br>interactions,<br>constituents | measure<br>neutrino<br>radiation, dark<br>matter,<br>clustering | predict<br>expected<br>sources,<br>clustering of<br>dark matter     |
| Neutrino<br>Astronomy     | test for new<br>particle<br>properties,<br>interactions                  | test for new<br>sources, nature<br>of dark matter               | measure origins<br>of cosmic rays,<br>nature of<br>gamma sources    |

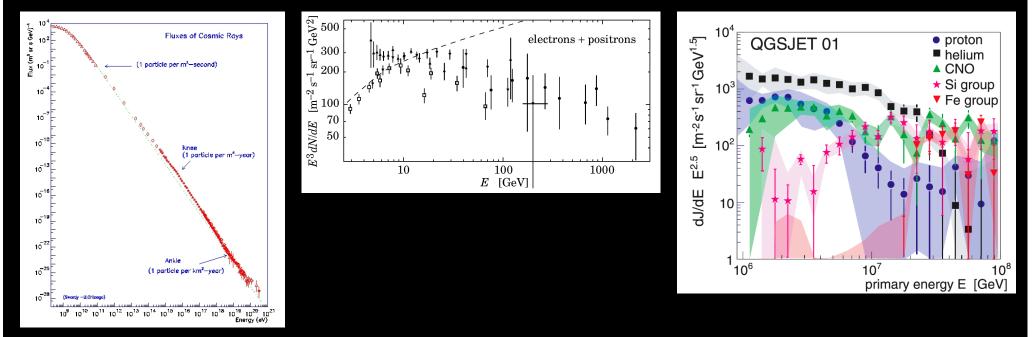
6

## Neutrino Astronomy — Why Try?

7

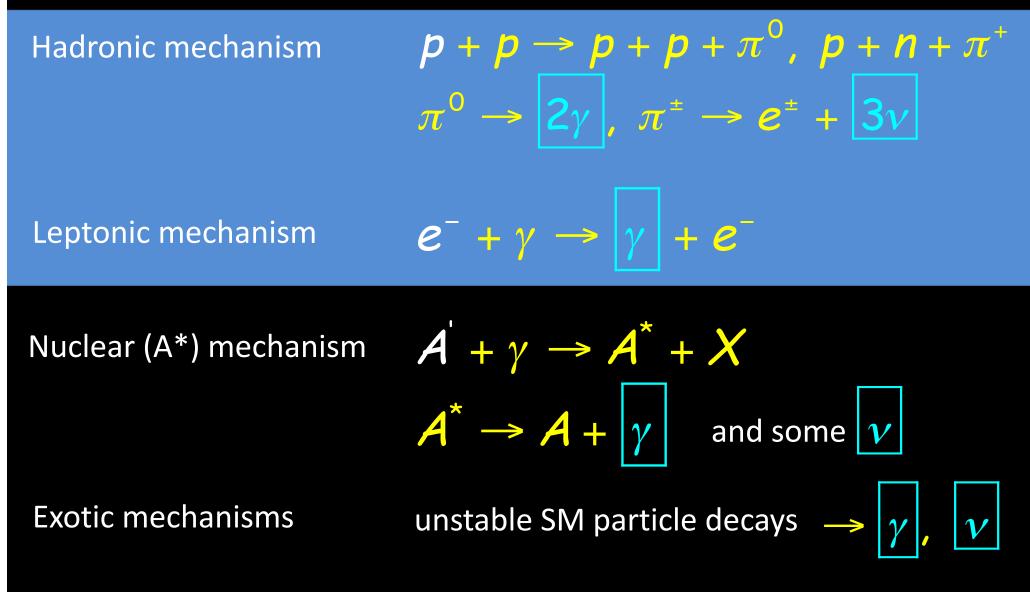
## Impossibility of Neutrino Astronomy

Requires: sources that reach high energies sources that are luminous sources of different types particles that can reach us particles that can point back particles that can be detected results that can be understood


#### With neutrinos, we think we can do it all

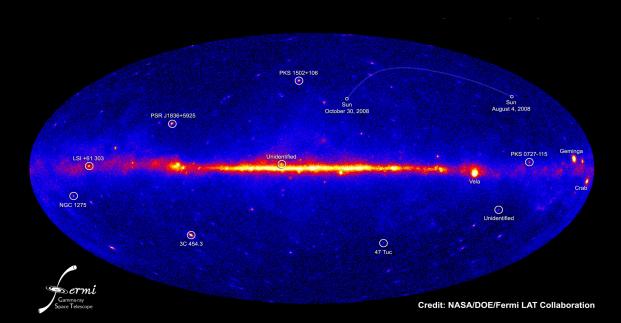
# *Energetic and Luminous CR Sources Exist* Charged cosmic rays first detected 100 years ago

#### protons

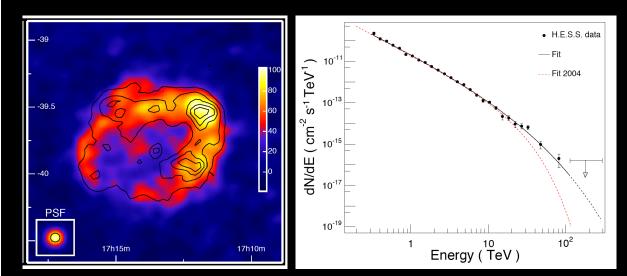

#### electrons and positrons

#### nuclei




Cosmic rays produced with high energies (up to  $10^{20}$  eV) and high densities (U<sub>CR</sub> ~ U<sub>starlight</sub> in MW), but do not point back Sources assumed astrophysical, but may also be exotic

# Cosmic Rays Inevitably Make Secondaries




Production always makes a mess; propagation makes more

# Energetic and Luminous Gamma Sources Exist



# Wide variety of point and diffuse sources, high fluxes



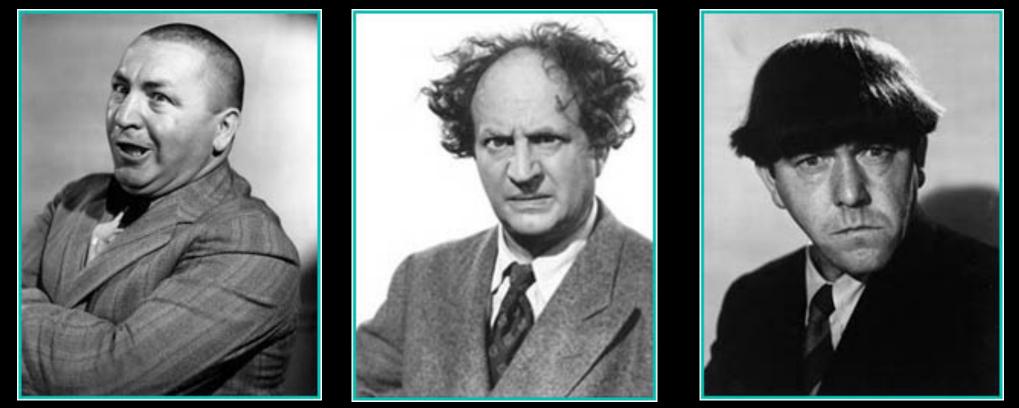
#### Energies up to $\sim 100 \text{ TeV}$

#### Gammas do point, but they do attenuate, don't reveal parents

John Beacom, The Ohio State University

HE Neutrino and CR Astrophysics, Weizmann, January 2017 11

## Energetic and Luminous Neutrino Sources Exist

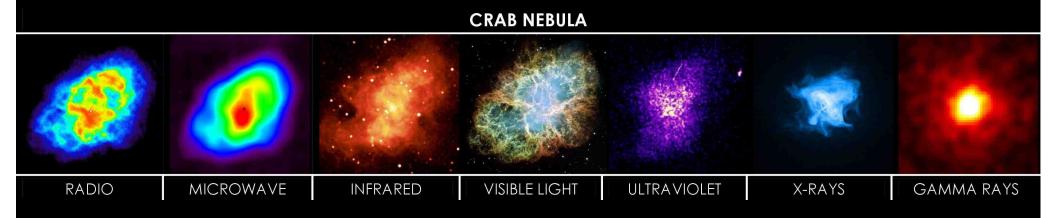

Speculation about high-energy neutrino astronomy since 1960s (Reines; Ruderman; Markov; Pontecorvo; Berezinsky; etc.), now greatly strengthened and directed by gamma-ray data



Large neutrino fluxes expected from a variety of diffuse, point, and transient sources in the Milky Way and cosmos ... and neutrino-bright surprises are possible

# We Need All Three Messengers

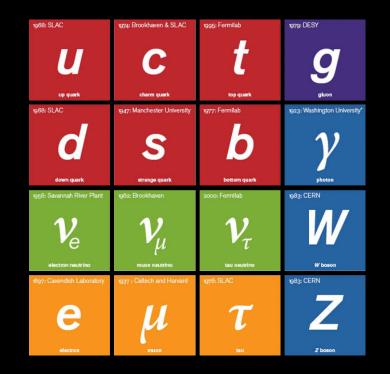
| cosmic rays | gamma rays       | neutrinos      |  |
|-------------|------------------|----------------|--|
| energetic   | direct revealing |                |  |
| divertable  | stoppable        | untrustworthy? |  |




John Beacom, The Ohio State University

## Neutrino Astronomy — How To Try?

## First Goal: New Astrophysics


What happens deep inside astrophysical systems? Use knowledge of subatomic physics ... *listen to theorists* 



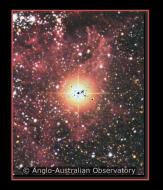
## Example successes: solar and SN neutrinos; IceCube neutrinos Example searches: GRB neutrinos; CR sources in MW

## Second Goal: New Particle Physics

What are the properties of familiar and of unmet particles? Use knowledge of astrophysics ... *listen to theorists* 



Example successes: neutrino mixing; confirm weak interations Example searches: neutrino exotica; dark matter


## Third Goal: New Surprises

## What haven't we thought of? Develop flexible, powerful searches ... *don't listen to theorists*



Example successes: supernova trigger; CR anisotropies Example searches: unknown unknowns!

## Neutrino Astronomy Must Be Broad



## MeV: Nuclear-Physics Sources

GADZOOKS!

Transient sources, e.g., supernova bursts Steady sources, e.g., backgrounds from supernovae Possible sources from dark matter decay or annihilation



## **TeV: Particle-Physics Sources**

Transient sources, e.g., AGN and GRBs Steady sources, e.g., Milky Way sources, SB galaxies Promising sources from dark matter annihilation or decay



## **EeV: Extreme-Physics Sources**

Certain fluxes from UHECR and propagation products Likely fluxes directly from their accelerators Possible sources from supermassive particle decays

## Must connect $\gamma$ , $\nu$ , CR to each other, physics, and astronomy

John Beacom, The Ohio State University

## What We Know and Don't Know

## What We Know: Fundamental Points

Experiment: We have the technology, working in many forms

**Observation:** We have clear detections up to PeV energies

Auxiliary: We have precise supporting data

Theory: We have reachable goals, appropriate uncertainties

## The situation is incredibly different now than earlier

## What We Know: Specifics

**Energy Range:** VHE but not UHE

**Distance:** Extragalactic, maybe Galactic

Classes: At least one, but unknown what

Variability: Steady, no transients

Solutions: Nothing yet

## This is not yet neutrino astronomy

## What We Want To Know (Dream Version)

**Energy Range:** From MeV to TeV to ZeV

**Distance:** Galactic to galactic to cosmic

Classes: 17

Variability: Steady, fluctuating, explosive

Solutions: Cosmic rays, gamma rays, dark matter, surprises

Success will make it neutrino astronomy

# Focusing Our Goals

## Concept: Proposed Charge

# Make neutrino astronomy a rich and broad-based, of leading importance to several fields of physics and astronomy

## Concept: Take Better Actions

## Barwick-Beacom work on APS Neutrino Study (2004)

A. WORKING GROUP REPORTS

#### A.6 Executive Summary of the Neutrino Astrophysics and Cosmology Working Group

PARTICIPANTS: B. Balantekin, S. Barwick, J. Beacom, N. Bell, G. Bertone, D. Boyd, L. Chatterjee, M.-C. Chen, V. Cianciolo, S. Dodelson, M. Dragowsky, J.L. Feng, Fuller, E. Henley, M. Kaplinghat, G. A. Karle, T. Kattori, P. Langacker, 7. Learned, 7. LoSecco, C. Lunardini, D. McKay, M. Medvedev, P. Mészáros, A. Mezzacappa, I. Mocioiu, H. Murayama, P. Nienaber, K. Olive, S. Palomares-Ruiz, S. Pascoli, R. Plunkett, G. Raffelt, T. Stanev, T. Takeuchi, 7. Thaler, M. Vagins, T. Walker, N. Weiner, B.-L. Young

• What can neutrinos disclose about the deep interior of astrophysical objects, and about the mysterious sources of very high energy cosmic rays?

49

#### A.6.2 RECOMMENDATIONS

Our principal recommendations are:

• We strongly recommend the development of experimental techniques that focus on the detection of astrophysical neutrinos, especially in the energy range above  $10^{15}$  eV.

We estimate that the appropriate cost is less than \$10 million to enhance radio-based technologies or develop new technologies for high energy neutrino detection. The technical goal of the next generation detector should be to increase the sensitivity by factor of 10, which may be adequate to measure the energy spectrum of the expected GZK (Greisen-Zatsepin-Kuzmin) neutrinos, produced by the interactions of ultra-high energy cosmic ray protons with the cosmic microwave background (Fig. 11). The research and development phase for these experiments is likely to require 3-5 years.

#### What succeeded? What failed?

## Concept: Define Our Pitch

Fundamental goals: Astrophysics of sources, exploration

Focal point: Goals that can only be met with neutrinos

Approach: Goals before methods, long- before short-term, speak coherently across the neutrino community

Broad appeal: Essential element of multi-messenger astro needed to undertand the most extreme sources

**Connections:** Many aspects of particle, nuclear, gravitational physics, astronomy, cosmology

# Concept: Define Landscape

|                              | VHE     | UHE        | Joining       |
|------------------------------|---------|------------|---------------|
| Science                      | sources | cosmogenic | maybe common  |
| Technology                   | optical | radio      | must connect  |
| Community                    | one     | another    | must connect  |
| Location /<br>Infrastructure | one     | another    | maybe connect |

# Concept: Define Stages

## Conventional approach:

Define exposure needed to detect N ~ 1 event Appropriate for motivating experiments to prove existence of flux, *but inadequate to do science we want* 

"Red-line" approach (Beacom-Karle-Waxman): Define exposure needed to require new physics/astrophysics if zero events detected This likely gives enough events in the actual cases *Seems crazy, but it is not that far away* We can propose less, but we should note where this is

## Proposed Strategy

# Proposed Strategy: VHE

#### **Overarching goals:**

To use neutrinos to discover and probe in detail nature's most powerful high-energy sources, which ubiquitously shape galaxies through their cosmic rays and other consequences, isolating those that accelerate protons and nuclei. To use these data to develop a robust new multimessenger astronomy, connecting to observations with gamma rays and gravitational waves.

#### Supporting evidence:

Cosmic rays; gamma rays; neutrinos; powerful sources

#### **Requirements:**

Reach  $\sim 10^{\text{-9}}$  GeV cm^{\text{-2}} s^{\text{-1}} sr^{\text{-1}} sensitivity with IC-Gen2 (red line 10<sup>-10</sup>...) Complete KM3NeT

# Proposed Strategy: UHE

#### **Overarching goals:**

To use neutrinos to discover and probe in detail nature's highest-energy sources, which reveal the most extreme physical conditions. To explore the high-energy, high-distance reaches of the cosmos, which can only be probed with neutrinos, and perhaps to develop directional astronomy with ultra-high-energy cosmic rays.

#### Supporting evidence: Cosmic rays; powerful sources

#### **Requirements:**

Reach  $\sim 10^{-9}$  GeV cm<sup>-2</sup> s<sup>-1</sup> sr<sup>-1</sup> sensitivity with radio-based detectors (red line  $10^{-10}$  ...)

## **Proposed Strategy: Joining VHE and UHE**

#### **Overarching goals:**

To use neutrinos to develop a broad-based astronomy that spans observations over many orders of magnitude in energy and a variety of types of sources. To discover new classes of sources and to test the physical connections between them.

#### Supporting evidence:

Gamma-ray/neutrino/cosmic-ray connection; powerful sources

#### **Requirements:**

Join optical- and radio-based sensitivities near 10—100 PeV, for complete coverage from TeV to ZeV

## Conclusions

The physics potential of neutrino astronomy is first-rate

The goals are technologically reachable

Key questions cannot be answered any other way

With the right strategy, we can convince others

## We will make it neutrino astronomy