High Resolution Study of TiO₂ Contact Layer Thickness on the Performance of Over 800 Perovskite Solar Cells

Laxman Gouda,[†] Kevin J. Rietwyk,⁺ Jiangang Hu, Adi Kama, Adam Ginsburg, Maayan Priel, David A. Keller, Shay Tirosh, Simcha Meir, Ronen Gottesman and Arie Zaban^{*}

Department of Chemistry, Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel.

Abstract:

In this research, we systematically explore the influence of the TiO_2 thickness with nanometric variations over a range of 20–600 nm on the photovoltaic parameters (open-circuit voltage, short circuit current, fill-factor and power conversion efficiency) of CH₃NH₃PbI₃ based solar cells. We fabricate several sample libraries of 13×13 solar cells on large substrates with spatial variations in the thickness of TiO₂ layers while maintaining similar properties for the other layers. We show that the optimal thickness is ~ 50 nm for maximum performance; thinner layers typically resulted in short circuited cells while increasing the thickness led to a monotonic decrease in performance. Furthermore, by assuming a fixed bulk resistivity of TiO₂ we were able to correlate the TiO₂ thickness to the series and shunt resistances of the devices and model the variation in the photovoltaic parameters with thickness using the diode equation to gain quantitative insights.