

Chemistry teacher knowledge: teaching successfully by knowing what you don't know

Professor Vanessa Kind Durham University School of Education

Introduction

What knowledge is held by trainee science teachers?

A strategy for improvement: A diagnostic test on chemical reactions

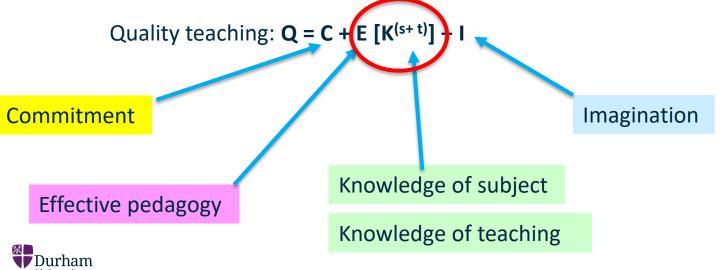
What professional knowledge is required of teachers?

Conclusions

"Teachers are one of the most influential and powerful forces for equity, access and quality in education and key to sustainable global development"

Eric Falt, UNESCO, New Delhi Director

World Teachers Day, 2019



Teacher/ing quality matters

"..the most important school-related factor in pupil learning: the answer is teaching." (Husbands, 2013)

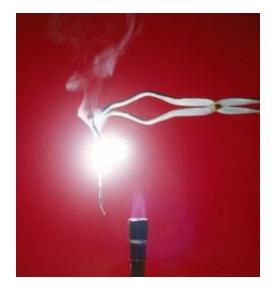
What knowledge is held by trainee science teachers?

A study using open-ended vignettes

Context and sample

239 PSTs enrolled on a one-year initial teacher education programme for teaching 11 -16 science at Durham University between 2005 – 2010

All PSTs had:-


- a Bachelors degree in a science subject
- 16+ qualifications in English, Mathematics and Science
- 18+ qualifications including at least one science subject
- passed a "suitability for teaching" interview

Chemistry vignette

A teacher showed a class of 11 -12 year olds magnesium burning in air. There was a bright white light, smoke, and white ash remained. The teacher asked, "Where did the white stuff come from?" Student responses included:-

- Inside the magnesium
- It is carbon/ soot
- It is ash left over from burning

Correct answer: It was a new substance formed in a chemical reaction.

What would you do to help students learn the scientifically correct answer?

Chemistry content knowledge

			Quality	Example	%
\langle			Correct relevant complete	Magnesium oxide (MgO) new substance; oxygen from air; elemental magnesium	6.3
	ality			Metals and oxygen react to produce oxides	14.6
	Increasing quality		Correct incomplete / irrelevant	Product named magnesium oxide / Equation for reaction	26.7
				Thermodynamic response	1.7
				Experimental procedure description	4.2
			Incorrect	A mixture forms	13.0
			No content knowledg	ge	29.3
			No response	© Vanessa Kind, School of Education Durham University	4.2

Chemistry pedagogical knowledge

		uality	Туре	Example	%
•	Releva	int	Demonstrate	Repeat experiment, Discuss MgO product	6.3
			Explain	State magnesium oxide is formed	11.7
			Illustrate	Draw particle diagrams	5.0
lity			Misconceptions	Use students' responses	12.6
quality	Releva	Relevant ncomplete / rrelevant	Demonstrate	Show mass increases	10.0
			Explain	Burning produces oxides	26.4
Increasing	irrelev		Illustrate	Model reaction with Lego [®] bricks	2.5
In			Demonstrate	Repeat with another gas	4.6
			Explain	CO ₂ not supporting combustion	7.5
			Analogy	It's like mixing paint / making a cake	4.2
	No res	ponse	© Vanessa Kind, School of Ed	ucation Durham University	5.9

Poor

- Correct relevant incomplete CK
- Correct, irrelevant PK

Student learning impact: LOW "Try an experiment where Mg was burnt in different pure gases, e.g. N, O, He. Pupils could compare products with original experiment to see if there was (sic) any comparable results. Pupils could also be taught about the principles of combustion with oxygen, e.g. burning other materials in the gases to reinforce this idea."

Biologist, Aged 23, Female, some science teaching

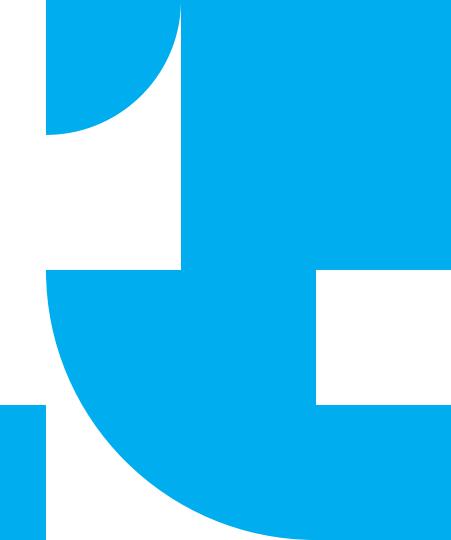
Good

•Complete relevant correct CK

• Relevant PK

Student learning impact: HIGH

MSci Chemistry, PhD, Age 27, Female, Prior science-based teaching experience "The white stuff is magnesium oxide. Explain that the oxygen in the product comes from the air. Say 'If I cut open the Mg strip, will there be oxygen in there?' Answer, 'No, only Mg.' Mg strip contains only Mg atoms, so when it burns the product will contain Mg and atoms from the other reactant. The other reactant is oxygen. Ash/soot comes from burning carbon containing species."


Summarising teacher knowledge

Pedagogy	Content	Quality
Correct relevant	Incorrect	Poor
Correct irrelevant	Irrelevant	
None	Correct relevant complete	
Correct relevant	Correct relevant incomplete	
Correct irrelevant		
Correct relevant	Correct relevant complete	Good

A strategy for improving chemistry knowledge: A diagnostic test on chemical reactions

400 MCQs on aspects of chemistry, graded for knowledge expected of 11-14s, 14-16s and 16 – 19s

Sample

		Age		Highest level of chemistry studied				
11-15	Frequency 79	Percent 46.5	Cumulative Percent 46.5	11-14	Frequency 59	Percent 34.7	Cumulative Percent 34.7	
16-20	51	30.0	76.5	14-16 GCSE	38	22.4	57.1	
21-25 26-30	8	4.7 3.5	81.2 84.7	16-19 Alevel/UG	66	38.8	95.9	
31-35	6	3.5	88.2	BSc	2	1.2	97.1	
36-40	8	4.7	92.9	PhD	3	1.8	98.8	
41+	12	7.1	100.0	Other	2	1.2	100.0	
Total	170	100.0		Total	170	100.0		

When magnesium ribbon is burned in air, a bright, white light is produced and white stuff is left over. Where did the white stuff come from?

A It was inside the magnesium

B It is ash, which is always left over from burning something in air

C It was formed in a reaction between magnesium and air D It is carbon from burning the magnesium in air

Response pattern

Response	Age							
Response	11-15	16-20	21-25	26-30	31-35	36-40	41+	Total
	NR1	0	0	0	0	0	0	1
A (inside)	0	3	0	0	0	0	0	3
B (ash)	16	5	0	0	0	1	1	23
C (new substance)	49	43	7	6	6	7	11	129
D (carbon)	13	0	1	0	0	0	0	14
Total	79	51	8	6	6	8	12	170

Which of these statements is the best definition for a chemical reaction?

- A A substance changes physical state, e.g. from solid to liquid
- B The appearance of a substance changes, e.g. colour
- **C** A new substance is made that was not there before D A change to a different state that is not easily reversed

Response pattern

Deereeree	Age							
Response	11-15	16-20	21-25	26-30	31-35	36-40	41+	
No response	3	0	0	0	0	0	1	4
A (Physical change)	2	3	0	0	1	0	0	6
B (Appearance)	0	10	0	0	0	0	0	10
C (New substance)	50	36	8	6	4	8	10	122
D (Not reversed)	24	2	0	0	1	0	1	28
Total	79	51	8	6	6	8	12	170

Which statement best describes what occurs when a chemical reaction takes place?

- A Bonds are broken between particles in reactants
 B Energy is released, as reactions are exothermic
 C Bonds are broken and new bonds made
- D Bonds are made, creating a new substance

Response pattern

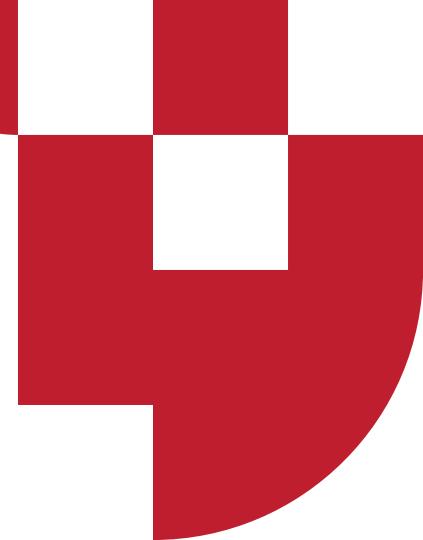
		Age							
Response	11-15 1	16-20 0	21-25 0	26-30 0	31-35 0	36-40 0	41+ 0	1	
A (bonds broken)	1	2	1	0	1	0	0	5	
B (energy)	6	5	0	0	0	0	0	11	
C (broken & made)	45	42	3	6	5	6	9	116	
D (bonds made)	26	2	4	0	0	2	3	37	
Total	79	51	8	6	6	8	12	170	

Diagnostic questions may be useful

For probing students' knowledge pre-and post-teaching

For establishing knowledge levels in preservice teachers, particularly those working out of field

But they need to be good questions Attention needs to be paid to the answers students give



What professional knowledge is required of teachers?

Document analysis of teacher education requirements in five nations

Document analysis

Teacher education documents from Singapore, Finland, US, England, Australia

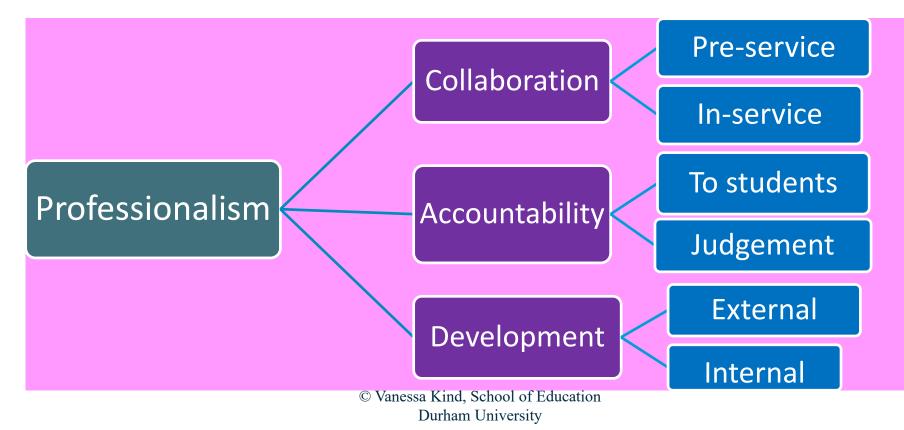
Thematic analysis

- Known aspects of teacher professional knowledge
- Emergent aspects of teacher professional knowledge

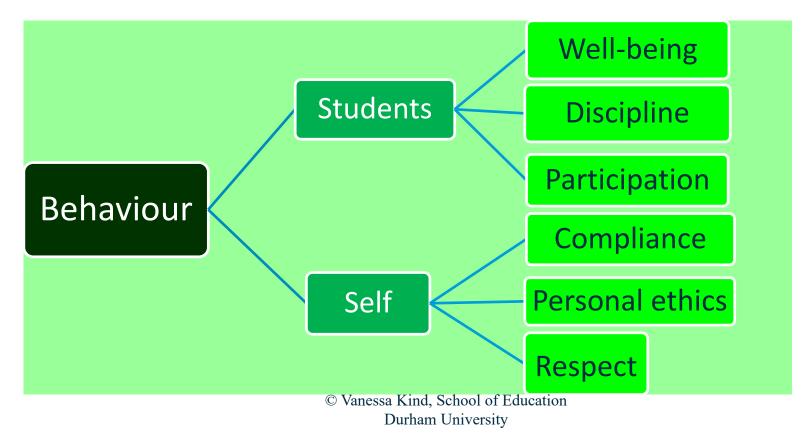
Nations

Nation	2018 PISA ranking	2015 TIMSS ranking science 8 th grade	GNI per capita 2019 \$
Singapore	2	1	57900
Finland	7	No data	49580
United States	13 (Average)	11	65760
England	14	8	42370 (UK)
Australia	16	17	54910

Document analysis for aspects of teacher professional knowledge


- Strong alignment
 - major heading in standards documents
 - other equivalent emphasis in documents / other literature
 - emphasised in teacher progression / qualification
- Weak alignment
 - sub-/ minor heading in standards documents
 - inference from documents / other literature
 - aspirational rather than actual

Aspects of professional teacher knowledge in international teacher education


*

Knowledge	Singapore	Finland	England	US	Australia
Content	Strong	Strong	Strong	Strong	Strong
Pedagogy	Strong	Strong	Strong	Weak	Strong
External Assessment	Weak	Weak	Strong	Strong	Strong
Students	Strong	Strong	Weak	Weak	Strong
Specific subject knowledge	Strong	Strong	Weak	Weak	Strong
Curriculum	Weak	Strong	Weak	Strong	Weak
Teacher beliefs	S Strong	Weak	Strong	Weak	Weak
University					

Emergent aspects of teacher knowledge: professionalism

Emergent aspects of teacher knowledge: teacher behaviours

Conclusions

Comparing teacher education policies

Higher performing nations emphasise Content knowledge and Topic-specific knowledge

Pedagogy – knowledge of students' learning needs

Teacher accountability as judges of student performance

Teachers as collaborative, high status professionals

Lower performing nations emphasise content, pedagogy and

External assessment – teachers prepare students for exams

Teacher behaviour – personal ethics and beliefs

Content and pedagogical knowledge data show

- When both are high quality, positive impact on student learning is possible
- When pedagogy is low quality, but content is correct positive impact on student learning is unlikely and students may not learn anything meaningful/ rote learn
- When pedagogy is good, but content is incorrect OR When both are low quality, negative impact on student learning is likely and students may learn irrelevant or incorrect material

Teacher knowledge research

- Enables precise strategies to be identified
- Permits development of PCK over time
- Should identify explicit pedagogical practices that impact positively on student achievement
- Agree a teacher knowledge model for a majority of situations to support policy development

To teach and train teachers successfully

- Focus ruthlessly on knowledge that impacts student progress and develop teacher professional knowledge that includes
 - awareness of individual students' learning needs
 - misconceptions / subject-specific difficulties
 - teaching strategies for addressing these
- Emphasise teachers are professionally accountable for developing effective practice
 - focus on improvement
 - support teachers making changes to practice
 - use the best teachers to educate the next teacher generation

Thank you!

Professor Vanessa Kind School of Education Durham University, UK

Vanessa.kind@durham.ac.uk

