Electrostatic Ion Beam Trap for the Study of Molecular Reaction Dynamics

Fundamental Interactions with Atom and Ion Traps Weizmann Institute, December 3, 2012

Overview

- Dissociative Photodetachment Probing Transient Neutrals using Coincidence Spectroscopy
- Photoelectron-Photofragment Coincidence O₄⁻
- Experimental Techniques Electrostatic Ion Beam Trap
- **HOCO**, HOCO and the OH + CO \rightarrow H + CO₂ reaction
- Photoelectron Spectroscopy
 - Electron Affinities and Vibrational Spectra of HOCO
- Experimental determination of the tunneling barrier
 - HOCO/DOCO \rightarrow H/D + CO₂
- Future

Neutralization Probes of Dissociative States

Photoelectron-Photofragment Coincidence Experiments

- Create precursor anion of interest
- Detach a single electron, collect it and resulting neutral fragments in coincidence (Dissociative Photodetachment)
- Full kinematic measurement of dissociation event

$$AB^- + h\nu \rightarrow A(KER) + B(KER) + e^-(eKE)$$

Dissociative Photodetachment of O_4^{-1}

 $\begin{array}{rcl} \mathbf{O_4}^- + \ \mathbf{h_V} \ \rightarrow \ \mathbf{O_2} \ (^3\Sigma_g^-) + \mathbf{O_2} \ (^3\Sigma_g^-) \ + \ \mathbf{e^-} \\ \mathbf{*O_4}^- + \ \mathbf{h_V} \ \rightarrow \ \mathbf{O_2}^- (^2\Pi_g) + \mathbf{O_2} \ (^1\Delta_g) \end{array}$

532 nm (2.33 eV)

Diagonal bands:

O₂ product vibrations Low rotational excitation

Vertical Spots:

2-photon signal – Photodissociation followed by Photodetachment

Hanold, Garner and Continetti Phys. Rev. Lett. **77**, 3335 (1996)

Photoelectron-Photofragment Coincidence Spectrometer

Linear Electrostatic Ion Beam Trap

Zajfman and co-workers (1997)

C.J. Johnson et al., Rev. Sci. Instrum. 82, 105105 (2011)

Ion Bunching and Synchronization

Ion Bunching and Synchronization

Fast Beam – Significant Photoelectron 'Doppler' Effect Vinoxide – $C_2H_3O^-$ photodetached at with 3.2 eV photons

Unbunched – Doppler Shift (Multi-mass experiments) Bunched and phase-locked to laser

Neutral particle coincidence can be used to clean-up unbunched mode (with a loss of duty cycle)

$OH + CO \rightarrow HOCO^* \rightarrow H + CO_2$

- Important source of heat in hydrocarbon combustion.
- Mediates CO, CO₂, and OH concentrations in lower atmosphere.
- Kinetics, spectroscopy, quantum chemistry and dynamics studies
- Previous studies: Sequential DPD of HOCO⁻

Clements, Continetti, Francisco, J. Chem. Phys. **117**, 6478 (2002) Lu, Hu, Oakman, Continetti, J. Chem. Phys. **126**, 194305 (2007) Lu, Oakman, Hu, Continetti, Mol. Phys. **106**, 595 (2008)

HOCO-

Cold, Vibrationally Resolved Photoelectron Spectra

Photoelectron-Photofragment Coincidence Spectroscopy

 Record photoelectron spectra in coincidence with stable HOCO ; H + CO₂ ; OH + CO

Isotope Effects – Tunneling Below the Barrier

DOCO

HOCO⁻

- Turnover towards $E_T = 0$ onset of long-lived HOCO/DOCO radicals
- Tunneling rate drops dramatically in DOCO: ≈ 0.2 eV higher in the well

Product Branching Fractions

- Processes occurring over > 6 orders of magnitude of time
- Extract lifetimes as a function of E_{int}?

Model for Tunneling HOCO \rightarrow H + CO₂

Generating a Model Potential

Two interacting states

$$V_{a,b}(r) = \frac{V_1(r) + V_2(r)}{2} \pm \sqrt{\left(\frac{V_1(r) - V_2(r)}{2}\right)^2 + H_{12}(r)^2}$$

Adiabatic curve generated by a 'predissociated' Morse oscillator

$$V_1^0(r) = D_e \left[1 - \exp\{-\alpha(r - r_e)\} \right]$$
$$V_2^0(r) = Ar^{-n}$$
$$H_{12}(r) = H_{12}^0 \exp\{-a|r - r_c|\}$$

Fix Morse well-depth D_e and r_e D_e : dissociation to $H + CO_2 A({}^1B_2)$ state (5.70 eV) r_e : 0.98 Å (CCSD/aug-cc-pVTZ)

Semiclassical Tunneling Model – WKB Approximation

Use WKB approximation - Works for arbitrary potentials V(r)

$$T(E_{int}) \approx \exp\left\{-2\int_{r_1(E_{diss})}^{r_2(E_{diss})} \sqrt{\frac{2\mu}{\hbar^2}(V(r) - E_{diss})} \,\mathrm{d}r\right\}$$

Not all internal energy is along the H-OCO reaction coordinate

- Assume reaction promoted by vibration in H-OCO
- Include some fraction of residual internal energy (quasi 1D)

$$E_{diss} = (v_{max} + 1/2) h\nu_{OH/OD} + \chi \left[E_{int} - (v_{max} + 1/2) h\nu_{OH/OD} \right]$$

Equate WKB result to experimental tunneling coefficients - Optimize V(r)

$Experiment \qquad Model$ $\ln\left[1 - f(E)^{\omega_{\text{OH}} t_{flt}}\right] = -2 \int_{r_1(E)}^{r_2(E)} \sqrt{\frac{2\mu}{\hbar^2}(V(r) - E)} \, \mathrm{d}r$

Tunneling Model Fit to the Experimental Branching Fraction

Experimentally Extracted Barrier

Johnson et al. J. Chem. Phys. 134, 171106 (2011)

Tunneling Reaction Pathway

 Minimum energy path and tunneling path essentially orthogonal near transition state

A New Global Potential Energy Surface

Communication: A chemically accurate global potential energy surface for the HO + CO \rightarrow H + CO₂ reaction

Jun Li,¹ Yimin Wang,² Bin Jiang,³ Jianyi Ma,¹ Richard Dawes,⁴ Daiqian Xie,³ Joel M. Bowman,² and Hua Guo^{1,a)}

Quantum Wavepacket Dynamics on an ab initio Potential Energy Surface

CCSD-2/d Potential Energy Surface

- 6-D (green) reproduces experimental photoelectron spectrum much better than 5-D (red)
- picosecond lifetime tunneling resonances observed below TS2 in 5-D simulations
- Difficult to capture microsecond time-scale deep tunneling observed in experiment

Ma, Li and Guo, Phys. Rev. Lett. 109, 063202 (2012)

Conclusions

- Photoelectron-Photofragment Coincidence Spectroscopy in an Electrostatic Ion Beam Trap
- Photodetachment of HOCO⁻ and DOCO⁻ : Three competing channels:

HOCO + e^- HOCO + e^- H + CO_2 + e^- OH + CO + e^-

- > Vibrational frequencies; cis AEA = 1.51 eV, trans AEA = 1.37 eV
- The HOCO → H + CO₂ tunneling pathway is significant: implications for high-pressure combustion / atmospheric oxidation?
- > Effects of vibrational excitation? Future Experiments

Acknowledgments

Experiment Dr. Chris Johnson Dr. Berwyck Poad Ben Shen

Ab Initio Theory

Prof. John Stanton Dr. Michael Harding

Univ. Texas, Austin

Support: U.S. Department of Energy