

FUNTRAP, Rehovot, Israel 2012

"Precision Mass Measurements on Radioactive Ions for Nuclear Astrophysics and Fundamental Studies"

x-Planck-Institut für Kernphysik Klaus Blaum Dec 04, 2012

Content

1) Basics of Penning-trap and storage- ring mass spectrometry	
	δ m/m
2) Nuclear astrophysics studies	≤ 10 ⁻⁷
3) Test of the unitarity of the CKM matrix	≤ 10 ⁻⁸
4) Nuclear masses for neutrino physics	≤ 10 ⁻⁹

Basics of Penning-trap and storage-ring mass spectrometry

 $E = m c^2$

MAX PLANCK INSTITUTH FOR NUCLEAR PHYSICS

Storage and cooling techniques

particles at nearly rest in space

relativistic particles

* ion cooling * long storage times
* single-ion sensitivity * high accuracy

 $m = 516 \text{ T} = 516 000 000 \text{ g} \approx 5 \cdot 10^8 \text{ g}$

However: Accuracy on atomic scale and $T_{1/2} < 1s$

MAX PLANCK INSTITUTI FOR NUCLEAR PHYSICS

Single ion sensitivity

MAX PLANCK INSTITUTI For Nuclear Physics

Highst resolving power

At least 20-fold improvement in resolving power!

Storage ring mass spectrometry

Schottky Mass Spectrometry

Isochronous Mass Spectrometry

CS

PHYSI

 \mathbf{A}

Щ

OR

SN

Z

B. Franzke, H. Geissel & G. Münzenberg, Mass Spectrometry Reviews 27 (2008) 428

Penning-trap mass spectrometry

Part II

Nuclear astrophysics studies

AAX PLANCK INSTITUT FOR NUCLEAR PHYSICS

Making gold in nature

s process

Pb (82)

Mass known

Half-life known nothing known

r process

r-process nucleosynthesis

- Most nuclear data experimentally unknown
- Theoretical predictions needed
- Astrophysical site uncertain
- Observational data to be matched

LSZ \simeq OR

r-process: Impact of IMS-ESR results

ē

Isochronus-Mass-Spectrometry

PHYS] SZ \mathbf{A}

r-process: New mass results

MAX PLANCK INSTITUTI FOR NUCLEAR PHYSICS

MAX PLANCE CREET L SCHAR

ĽĽ

r-process: New mass results II

CPT (Argonne)

A large set of new mass data will be published soon!

MAX PLANCK INSTITUTE FOR NUCLEAR PHYSICS

The mass of ⁸²Zn

Composition of the outer crust of a neutron star

ISOLTRAP (ISOLDE)

R. Wolf and the ISOLTRAP Coll. (2011)

MAX PLANCK INSTITUT FOR NUCLEAR PHYSICS

Plumbing neutron stars to new depths

Composition of the outer crust of a neutron star

Depth profile of a neutron star

HFB-19 and HFB-21 model calculations

Calculations done by S. Goriely (2011)

⁸²Zn: most exotic nuclide at the N=50 shell closure

Microscopic mass models predicted ⁸²Zn to be a component of the outer crust of a neutron star

 \rightarrow disproved with exp. mass

AAX PLANCK INSTITUTI OR NUCLEAR PHYSICS

Nuclides at the rp-process path

Part III

Test of the unitarity of the CKM quark mixing mtrix

MAX PLANCK INSTITUTI FOR NUCLEAR PHYSICS

$Q_{\rm EC}$ values of superallowed beta emitters

- Decays of nuclear 0⁺? 0⁺
 states, *T=1*
- Pure Fermi decays
- Simple decay matrix element
- Characterized with an *ft* value
 - f stat. rate function;(f $\propto Q_{EC}^{5}$)
 - *t* partial half-life *t_{1/2}/b*

Q-values needed at 100-eV level

Testing the Standard Model

• Corrected value:

 $\mathcal{F}t = ft \left(1 + \delta_R'\right) \left(1 + \delta_{NS} - \delta_C\right) = \frac{K}{2G_V^2 \left(1 + \Delta_V^R\right)}$

- Corrections about 1% [Towner and Hardy, Phys. Rev. C 77, 025501 (2008)]
- Cabibbo-Kobayashi-Maskawa quark mixing
 - $\begin{array}{c|c} \textbf{matrix} & \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} |d\rangle \\ |s\rangle \\ |b\rangle \end{bmatrix} = \begin{bmatrix} |d'\rangle \\ |s'\rangle \\ |b'\rangle \end{bmatrix}$
- Quark-mass eigenstates to weak eigenstates

$$V_{\rm ud} = \frac{K}{2G_F^2 \left(1 + \Delta_R^V\right) \overline{\mathcal{F}t}}$$

Currently 13 transitions contribute

JANCK INSTITUT

Superallowed beta-emitters – Q_{EC}

AAX PLANCK INSTITUT FOR NUCLEAR PHYSIC

The Ft picture

Ft = 3072.08(79) s

Towner&Hardy, Rep. Prog. Phys. 73 (2010) 046301

MAX PLANCK INSTITU FOR NUCLEAR PHYSIC

Test of the CKM unitarity

Check unitarity via first row elements:

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 + \Delta$$

 V_{us} and V_{ub} from particle physics data (*K* and *B* meson decays)

Present status:

 V_{ud} (nuclear β -decay) = 0.97425(22) V_{us} (kaon-decay) = 0.22521(94) V_{ub} (B meson decay) = 0.0037(5)

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9999(6)$$

Towner&Hardy, Rep. Prog. Phys. 73 (2010) 046301

Part IV

Nuclear masses for neutrino physics

Neutrino-less double EC (0v2EC)

Is the neutrino a Majorana or Dirac particle?

MAX PLANCK INSTITUT FOR NUCLEAR PHYSICS

Resonance enhancement factors

MAX PLANCK INSTITUT FOR NUCLEAR PHYSIC

Ш

INSTI

ANCK

à

MAX

Results so far

Summary

Exciting results in high-precision mass measurements for nuclear astrophysics and fundamental studies

- Basics of Penning-trap and storage-ring mass spectrometry
- Applications of precision masses for nuclear astrophysics studies
- Test of the unitarity of the CKM quark mixing matrix
- Precision masses and nuclear structure calculations for neutrino physics research
- ... and many more!

Future mass spectrometry facilities

MAX PLANCK INSTITUTI FOR NUCLEAR PHYSICS

MAX FLANKS CERELL REMARK

Thanks

Thanks a lot for the invitation and your attention!

Email: klaus.blaum@mpi-hd.mpg.de WWW: www.mpi-hd.mpg.de/blaum/

Adv. Grant MEFUCO (#290870)

Helmholtz Alliance (HA216)

Nuclear Astrophysics Virtual Institute

Helmholtz Association (VH-VI-417)

Member of EuroGENESIS / MASCHE.

