

The TRINAT Trap Program

M. Anholm¹, D. Ashery², O. Aviv², S. Behling ³, J.A. Behr⁴, I. Cohen², B. Frekers³, A. Gorelov^{4,5}, G. Gwinner⁶, K.P. Jackson⁴, T. Kong¹, D.G. Melconian^{3,5}, M.R. Pearson⁴, R.A. Pitcairn¹

Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
 School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
 Department of Physics, Texas A & M University, College Station, Texas, USA
 TRIUMF, Vancouver, British Columbia, Canada
 Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
 Department of Physics, University of Manitoba, Winnipeg, Manitoba, Canada

Outline

Limit on Scalar Interaction Upgraded Experiment and Projected Precision

Limit on Right-Handed Currents Upgraded Experiment and Projected Precision

Limit on Tensor Interaction Upgraded Experiment and Projected Precision β -decay rate (Jackson, Treiman, Wyld 1957):

$$dW = dW_o(1 + \frac{\vec{p}_{\beta} \cdot \vec{p}_{\nu}}{E_{\beta}E_{\nu}}a_{\beta\nu} + \frac{\Gamma m_e}{E_{\beta}}b + \frac{\vec{J}}{J} \cdot [\frac{\vec{p}_{\beta}}{E_{\beta}}A_{\beta} + \frac{\vec{p}_{\nu}}{E_{\nu}}B_{\nu} + \frac{\vec{p}_{\beta} \times \vec{p}_{\nu}}{E_{\beta}E_{\nu}}D] + c[\frac{\vec{p}_{\beta} \cdot \vec{p}_{\nu}}{3E_{\beta}E_{\nu}} - \frac{(\vec{p}_{\beta} \cdot \vec{j})(\vec{p}_{\nu} \cdot \vec{j})}{E_{\beta}E_{\nu}}][\frac{J(J+1) - 3 < (\vec{J} \cdot \vec{j})^2 >}{J(2J-1)}])$$

Allows for: V - A, Scalar, Tensor Interactions

Left, Right-handed currents

Time-reversal violation

 $a_{\beta\nu}$, b, c, A_{β} , B_{ν} , D: values predicted by the Standard Model Recent review: S. Severijins and M. Beck, Rev. Mod. Phys. 78 991 (2006)

Measurements feasible using Atom traps and Radioactive Beams.

Limits on Scalar Boson Interaction

$$\begin{split} dW &= \\ dW_o(1 \ + \ \frac{\vec{p_{\beta}} \cdot \vec{p_{\nu}}}{E_{\beta}E_{\nu}} \boldsymbol{a_{\beta\nu}} \ + \ \frac{m_e}{E_{\beta}} \boldsymbol{b} \ + \ \frac{\vec{J}}{J} \cdot \left[\ \frac{\vec{p_{\beta}}}{E_{\beta}} A_{\beta} \ + \ \frac{\vec{p_{\nu}}}{E_{\nu}} B_{\nu} \ + \ \frac{\vec{p_{\beta}} \times \vec{p_{\nu}}}{E_{\beta}E_{\nu}} D \right] \\ &+ c \left[\frac{\vec{p_{\beta}} \cdot \vec{p_{\nu}}}{3E_{\beta}E_{\nu}} - \frac{(\vec{p_{\beta}} \cdot \vec{j})(\vec{p_{\nu}} \cdot \vec{j})}{E_{\beta}E_{\nu}} \right] \left[\frac{J(J+1) - 3 < (\vec{J} \cdot \vec{j})^2 >}{J(2J-1)} \right]) \end{split}$$

For pure Fermi $0^+ \rightarrow 0^+$ decay $\beta - \nu$ angular correlation:

$$\begin{split} P(\theta) &= 1 + b \frac{\mathrm{m}_{\beta}}{\mathrm{E}_{\beta}} + a_{\beta\nu} \frac{\mathrm{v}_{\beta}}{\mathrm{c}} \cos(\theta) \\ a_{\beta\nu} &= 1 - 4 \frac{g_S^2}{g_V^2} \left(|a_L^S|^2 + |a_R^S|^2 \right) \qquad b = \pm \frac{g_S}{g_V} \frac{\mathcal{R}e(a_{LL}a_R^S)}{|a_{LL}|^2} \\ a_L^S &= A_{LL} + A_{LR} \qquad a_R^S = A_{RR} + A_{RL} \\ \mathbf{SM: b} &= \mathbf{0}, \ \mathbf{a}_{\beta\nu} = \mathbf{1.0.} \\ C_S + C_S' \sim \mathbf{0.001 \ in \ MSSM, \ Profumo \ et \ al., \ PRD \ \mathbf{75} \ \mathbf{075017}} \end{split}$$

Measurement of $\beta - \nu$ Angular Correlation in ${}^{38m}K \xrightarrow{\beta^+} {}^{38}Ar$

 $Q(^{38m}_{19}{
m K}) = 5.02234(12)~{
m MeV}$

Future (2010-2015)

Proposal:

By 2013:

•Add a 25MeV electron driver to supply electrons to one new target

•Add a new ISAC frontend to deliver a second RIB beam to ISAC

By 2015:

•Add a new beam line from the cyclotron to deliver 500MeV protons to the new target

22

TRINAT DOUBLE MOT TRAPPING SYSTEM

Collection chamber

- 95% ${}^{38\text{gs}}\text{K}^+(t_{1/2}=7.64 \text{ min}) + 5\% \,{}^{38\text{m}}\text{K}^+(t_{1/2}=0.924 \text{ s})$ neutralization of ${}^{38}\text{K}^+$
- vapor cell trap
- 10^{-8} Torr
- 0.1% of $^{38\mathrm{m}}$ K trapped
- 75% of trapped ^{38m}K moved

Detection chamber

- 100% 38m K, t_{1/2}= 0.924 s
- retrap from atomic beam
- $3 \cdot 10^{-10}$ Torr, $t_{1/2}^{trap} = 30$ s
- 0.75 mm FWHM trap size
- 2000 atoms in trap
- photoionization of ^{38m}K

TRINAT DETECTION SYSTEM FOR ^{38m}K DECAY

Elecrtostatic hoops

- High recoil collection and detection efficiencies due to *E*-field
- Coincident detection of e^+ and recoils back-to-back
- Position information both from e^+ and recoil detectors
- Possibility to measure p_e and p_{recoil} and using them to determine p_{ν} .
- Chamber geometry suppresses recoiling ion detection from decays on walls and electrostatic hoops

Exploiting over-determined kinematics

Results: A. Gorelov et al., PRL 94, 142501 (2005)

$$P(\theta) = 1 + b \frac{\mathbf{m}_{\beta}}{\mathbf{E}_{\beta}} + \frac{a_{\beta\nu}}{\mathbf{c}} \frac{\mathbf{v}_{\beta}}{\mathbf{c}} \cos(\theta)$$

For $|b| < 0.04, \langle E_{\beta} \rangle = 3.3 \text{ MeV}$

Define:

 $\tilde{a} = \frac{a_{\beta\nu}}{1 + b\frac{m_{\beta}}{\langle E_{\beta} \rangle}}$ $\tilde{a} = 0.9981 \pm 0.0030 \substack{+0.0032 \\ -0.0037}$

In agreement with the Standard Model.

Summary of results for a

³²Ar: E. G. Adelberger et al., Phys. Rev. Lett. 83, 1299(1999)

- ^{38m}K: A. Gorelov *et al.*, PRL 94, 142501 (2005)
- ²¹Na: P.A. Vetter et al., Phys. Rev. C77, 035502 (2008)

Upgraded System for ³⁸*m*K decay measurement

- Reduce all systematic and statistical errors:
- New, larger MCP detector and β telescope near 100% acceptance for ions. Improved low E_{β} detection for Fierz term measurement.
- Time and momentum focusing for better resolution and charge state separation.
- Higher beam intensity: 40 μA vs. 1 μA in previous experiment.
- New chamber design to accomodate all the above.

RECOIL DETECTOR SPATIAL CALIBRATION

Calibration performed with precise mask (2mmx2mm hole, 1mm strip) and ¹⁴⁸Gd source. Evaluated resolution 0.25mm.

Time Focussing: p_{recoil} FROM 2% I.C. DECAY OF ^{86m}Rb

Improved acceptance and time/charge-state resolution

Simulations for ^{38m}K decay

D. Ashery, The TRINAT trap program FUNTRAP12 workshop December 2012 15

PRESENT AND PLANNED ERRORS (38m K decay)

	PRESENT	FUTURE
Applied electric field		
E-field non-uniformity	0.0010	0.0003
E-field/trap size	0.0012	0.0004
Beta-detector response		
Energy calibration	0.0016	8000.0
Line shape tail/total	0.0013	0.0003
511keV Compton summing	0.0002	0.0004
Recoil Detector efficiency		
MCP incident recoil angle	0.0006	0.0004
MCP incident ion energy	0.0010	0.0003
Prompt peak	0.0009	
Transverse trap position	$+0.0000\\-0.0004$	
Electron shake-off	$+0.0000 \\ -0.0015$	0.0003
Total systematic error	$+0.0030 \\ -0.0034$	0.0012

• Most errors determined by statistics-limited data evaluation.

- Further improvements: use all kinematic information.
 - Extend analysis to lower E_{β} to measure b.

Limits on Scalar Interaction

D. Ashery, The TRINAT trap program FUNTRAP12 workshop December 2012 **11**

Polarization Observables

$$\begin{split} dW &= \\ dW_{o}(1 + \frac{\vec{p}_{\beta} \cdot \vec{p}_{\nu}}{E_{\beta}E_{\nu}}a_{\beta\nu} + \frac{\Gamma m_{e}}{E_{\beta}}b + \frac{\vec{J}}{J} \cdot [\frac{\vec{p}_{\beta}}{E_{\beta}}A_{\beta} + \frac{\vec{p}_{\nu}}{E_{\nu}}B_{\nu} + \frac{\vec{p}_{\beta} \times \vec{p}_{\nu}}{E_{\beta}E_{\nu}}D_{\beta}] \\ &+ c[\frac{\vec{p}_{\beta} \cdot \vec{p}_{\nu}}{3E_{\beta}E_{\nu}} - \frac{(\vec{p}_{\beta} \cdot \vec{j})(\vec{p}_{\nu} \cdot \vec{j})}{E_{\beta}E_{\nu}}][\frac{J(J+1) - 3 < (\vec{J} \cdot \vec{j})^{2} >}{J(2J-1)}]) \\ \mathbf{Asymmetry} &= \frac{\sigma(\uparrow) - \sigma(\downarrow)}{\sigma(\uparrow) + \sigma(\downarrow)} \\ \vec{J} \parallel \vec{P}_{\beta} \Longrightarrow \text{ measure } A_{\beta} \ (\beta \text{ singles or coin. with recoil}) \\ \vec{J} \perp \vec{P}_{\beta}, \quad \vec{P}_{\nu} = \vec{P}_{R} - \vec{P}_{\beta} \implies dW \propto \frac{\vec{J}}{J} \cdot \left[B_{\nu}\vec{P}_{R} + D\frac{(\vec{P}_{\beta} \times \vec{P}_{R})}{E_{\beta}}\right] \\ \text{Measure } B_{\nu} \ \text{from Recoil Asymmetry in } \vec{P}_{R} \parallel \vec{J} \ \text{plane} \end{split}$$

Right-handed Currents

 $|W_I\rangle = cos \zeta |W_1\rangle - sin \zeta |W_2\rangle$ $|W_R\rangle = sin \zeta |W_1\rangle + cos \zeta |W_2\rangle$ **Define:** $x = (M_L/M_R)^2 - \zeta$ and $y = (M_L/M_R)^2 + \zeta$ $\lambda \equiv g_A M_{GT} / g_V M_F$

 $A_{\beta} = \frac{-2\lambda}{1+\lambda^2} \left| \frac{\lambda(1-y^2)}{5(1+y^2)} - (1-xy) \sqrt{\frac{3(1+x^2)}{5(1+y^2)}} \right|$ $B_{\nu} = \frac{-2\lambda}{1+\lambda^2} \left| \frac{\lambda(1-y^2)}{5(1+y^2)} + (1-xy) \left| \frac{3(1+x^2)}{5(1+y^2)} \right| \right|$ $R_{slow} \equiv \frac{dW(J \cdot \vec{p}_{\beta} = -1)}{dW(J \cdot \vec{p}_{\beta} = +1)} = \frac{1 - a - 2c/3 - (A + B)}{1 - a - 2c/3 + (A + B)} = y^2$

The \mathbf{R}_{slow} Concept

 $^{37}K \rightarrow ^{37}Ar \ \beta \ \nu \qquad 3/2^+ \rightarrow 3/2^+$

Coefficients of $\beta - \nu$ Angular Correlation in Polarized ${}^{37}K \xrightarrow{\beta^+} {}^{37}Ar$

Calculated with the Standard Model assuming $\lambda \equiv g_A M_{GT}/g_V M_F = -0.5754 \pm 0.0018$

Maximal Parity Violation

observable	$a_{\beta u}$	A_{eta}	B_{ν}	С
value	0.6683	-0.5702	-0.7692	0.1990
\mathbf{error}^1	0.0013	0.0005	0.0013	0.0008

¹ Due to error in λ

$$\mathbf{b} = \mathbf{D} = \mathbf{R}_{slow} = \mathbf{0}$$

Figure 1: Hyperfine level scheme of the ${}^2S_{1}$ around

Optical Pumping

Searching for Right-Handed Currents in the β -decay of Laser-Cooled, Polarized 37 KTRIUMF AGMDan MelconianDec. 8, 2004

Determination of the Polarization

Photoions detected in MCP

Trap Cycle

Measure B_{ν} from Recoil Asymmetry in $\hat{x} - \hat{z}$ plane Measure D from Recoil Asymmetry in $\hat{y} - \hat{z}$ plane

Upgraded Experimental System

- Reduce all systematic and statistical errors:
- New, larger MCP detector and β telescope near 100% acceptance for ions. Improved low E_{β} detection for Fierz term measurement.
- New polarization detectors with Si MSD and plastic scintillator. Position information and better resolution.
- Time and momentum focusing for better resolution and charge state separation.
- Shakeoff electron detection for background suppression.
- Better trapping/polarization cycle by using AC MOT.
- Higher beam intensity: 40 μA vs. 1 μA in previous experiment.
- New chamber design to accomodate all the above.

The principle of AC MOT

M. Harvey and A.J. Murray Phys. Rev. Lett. 101, 173201 (2008)

D. Ashery, The TRINAT trap program FUNTRAP12 workshop December 2012 **27**

NEW DETECTION CHAMBER FOR ³⁷K

- Position sensitivity on all beta and recoil detectors
- Larger beta and recoil detectors will improve statistics
- AC MOT will speed up switching from MOT cycle to OP cycle
- Improvement of a weak magnetic field during OP will improve polarization
- Coincidences with shake off electron MCP will reduce background for competitive measurements of beta asymmetry

D. Ashery, The TRINAT trap program FUNTRAP12 workshop December 2012 **29**

JUST MEASURED

Asymmetry_Run_0782

Limits on Right-Handed Currents

Tensor Interaction

The angular distribution of recoiling daughter nuclei of polarized β emitters, S.B. Treiman PR 110, 448 (1957):

$$W(\theta_r)d(\cos\theta_r) = \left\{1 + \frac{1}{3}c'\chi_2 - P(A_\beta + B_\nu)\chi_1\cos\theta_r - c'\chi_2\cos^2\theta_r\right\}d(\cos\theta_r)$$

 $\chi_1, \ \chi_2 \ {f kinematical functions}, \qquad c' = c rac{J(J+1) - 3 \langle (\vec{J} \cdot \vec{j})^2 \rangle}{J(2J-1)}.$

For pure GT transitions and no Tensor Interaction: $A_{\beta} + B_{\nu} = 0$ $5/8(A_{\beta} + B_{\nu}) = 2C_T C'_T + \frac{m_{\beta}}{E_{\beta}}(C_T - C'_T)$

And can be deduced from Asymmetry measurements:

$$A_{\rm spin} = \frac{W[\theta, P] - W[\theta, -P]}{W[\theta, P] + W[\theta, -P]} = \frac{\chi_1 P (A_\beta + B_\nu) \cos\theta}{1 + c' \chi_2 + c' \chi_2 \cos^2\theta}$$

Insensitive to Right-Handed currents; constrains Tensor Interaction

Using recoil momentum information enhances the sensitivity and allows separation of SM recoil-order corrections

(O. Aviv, MSc. Thesis, Tel Aviv University (2004)):

$$A_{\rm spin}(P_R) = \frac{(f_4(A_\beta + B_\nu) - f_7 b)P\cos\theta}{f_1 - f_6 b - f_2(a_{\beta\nu} + c'/3) + c'(f_3 + f_5\cos^2\theta)}$$

 $f_i(P_R)$: Calculated functions of recoil momentum

Use polarized ⁸⁰Rb, $1^+ \rightarrow 0^+$ pure GT transition. \mathbf{P}_{Recoil} from TOF to Shakeoff e^- MCP

 $(A_{\beta} + B_{\nu}) = 0.015 \pm 0.029 \text{ arXiv: } 0811.0052 \text{ [nucl-ex]},$

J.R.A. Pitcairn *et al.*, Phys. Rev. C79, 015501 (2009)

Experimental precision better by an order of magnitude, BUT:

Constraints on Tensor Interaction dominated by theoretical uncertainties in Recoil-Order corrections

SUMMARY

- Studies of β decay of trapped radioactive nuclei provide constraints on the Standard Model
- Next generation experiments will provide tighter constraints, complementary to measurements with HE accelerators

$$\begin{split} \xi &= |M_F|^2 (|C_S|^2 + |C_V|^2 + |C_S'|^2 + |C_V'|^2) + |M_{GT}|^2 (|C_T|^2 + |C_A|^2 + |C_T'|^2 + |C_A'|^2) \\ a_{\beta\nu}\xi &= |M_F|^2 (-|C_S|^2 + |C_V|^2 - |C_S'|^2 + |C_V'|^2) + \frac{|M_{GT}|^2}{3} (|C_T|^2 - |C_A|^2 + |C_T'|^2 - |C_A'|^2) \\ b\xi &= \pm 2Re[|M_F|^2 (C_S C_V^* + C_S' C_V') + |M_{GT}|^2 (C_T C_A^* + C_T' C_A'^*)] \\ c\xi &= |M_{GT}|^2 \Lambda_{J'J} (|C_T|^2 - |C_A|^2 + |C_T'|^2 - |C_A'|^2) \\ A_{\beta}\xi &= 2Re[\pm |M_{GT}|^2 \lambda_{J'J} (C_T C_T'^* - C_A C_A'^*) + \delta_{J'J} |M_{GT}| |M_F| \sqrt{J/(J+1)} (C_S C_T'^* \\ &+ C_S' C_T^* - C_V^* C_A^* - C_V' C_A^*)] \\ B_{\nu}\xi &= 2Re\{|M_{GT}|^2 \lambda_{J'J} [\frac{m_e}{E_e} (C_T C_A' + C_T' C_A^*) \pm (C_T C_T'^* + C_A C_A'^*)] \\ &- \delta_{J'J} |M_{GT}| |M_F| \sqrt{J/(J+1)} \times [(C_S C_T'^* + C_S' C_T^* + C_V C_A'^* + C_V' C_A^*) \\ &\pm \frac{m}{E_e} (C_S C_A'^* + C_S' C_A^* + C_V C_T'^* + C_V' C_T^*)]\} \\ D\xi &= 2Im\{\delta_{JJ'} |M_F| |M_{GT}| \sqrt{\frac{J}{J+1}} (C_S C_T^* + C_S' C_T'^* - C_V C_A^* - C_V' C_A'')\} \end{split}$$

$$\lambda_{J'J} = \begin{cases} 1, & J \to J' = J - 1\\ \frac{1}{J+1}, & J \to J' = J\\ -\frac{J}{J+1}, & J \to J' = J + 1 \end{cases}$$
$$\Lambda_{J'J} = \begin{cases} 1, & J \to J' = J + 1\\ \frac{-\frac{2J-1}{J+1}, & J \to J' = J\\ \frac{J(2J-1)}{(2J+3)(J+1)}, & J \to J' = J + 1 \end{cases}$$

 C_i : Interaction Amplitudes (complex)

 g_i : Hadronic Form Factors a_{ij} : Chirality coupling constants i: ν j: quark

$$g_{V} = \mathbf{1}, \ g_{A} = -\mathbf{1.27} \ (\mathbf{n} \ \mathbf{decay})$$

$$a_{LL} = V_{ud} \frac{g^{2}}{8M_{W}^{2}} \cong 8 \cdot 10^{-6} GeV^{-2}$$

$$a_{ij}, A_{i,j}, \alpha_{i,j} = 0 \quad i, j \neq L, L$$

$$a_{\beta\nu} = \frac{y^{2} - \frac{1}{3}}{y^{2} + 1}, \quad y = \frac{C_{V}M_{F}}{C_{A}M_{GT}}$$

$$b = 0$$

$$c = \frac{-\Lambda_{JJ'}}{1 + y^{2}}$$

$$A_{\beta} = \frac{\pm \lambda_{JJ'} - 2\delta_{JJ'}y\sqrt{J/(J+1)}}{y^{2} + 1}$$

$$B_{\nu} = \frac{\pm \lambda_{JJ'} - 2\delta_{JJ'}y\sqrt{J/(J+1)}}{y^{2} + 1}$$

$$D = 0$$

