The TRINAT Trap Program

M. Anholm ${ }^{1}$, D. Ashery ${ }^{2}$, O. Aviv ${ }^{2}$, S. Behling ${ }^{3}$, J.A. Behr ${ }^{4}$, I. Cohen ${ }^{2}$, B. Frekers ${ }^{3}$, A. Gorelov ${ }^{4,5}$, G. Gwinner ${ }^{6}$, K.P. Jackson ${ }^{4}$, T. Kong ${ }^{1}$, D.G. Melconian ${ }^{3,5}$, M.R. Pearson ${ }^{4}$, R.A. Pitcairn ${ }^{1}$
1. Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
2. School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
3. Department of Physics, Texas A \& M University, College Station, Texas, USA
4. TRIUMF, Vancouver, British Columbia, Canada
5. Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
6. Department of Physics, University of Manitoba, Winnipeg, Manitoba, Canada

Outline

Limit on Scalar Interaction
Upgraded Experiment and Projected Precision
Limit on Right-Handed Currents
Upgraded Experiment and Projected Precision
Limit on Tensor Interaction
Upgraded Experiment and Projected Precision

β-decay rate (Jackson, Treiman, Wyld 1957):

$$
\begin{aligned}
& d W= \\
& \begin{aligned}
d W_{o}(1 & +\frac{\overrightarrow{p_{\beta}} \cdot \overrightarrow{p_{\nu}}}{E_{\beta} E_{\nu}} a_{\beta \nu}+\frac{\Gamma m_{e}}{E_{\beta}} b+\frac{\vec{J}}{J} \cdot\left[\frac{\overrightarrow{p_{\beta}}}{E_{\beta}} A_{\beta}+\frac{\overrightarrow{p_{\nu}}}{E_{\nu}} B_{\nu}+\frac{\overrightarrow{p_{\beta}} \times \overrightarrow{p_{\nu}}}{E_{\beta} E_{\nu}} D\right] \\
& \left.+c\left[\frac{\overrightarrow{p_{\beta}} \cdot \overrightarrow{p_{\nu}}}{3 E_{\beta} E_{\nu}}-\frac{\left(\overrightarrow{p_{\beta}} \cdot \vec{j}\right)\left(\overrightarrow{p_{\nu}} \cdot \vec{j}\right)}{E_{\beta} E_{\nu}}\right]\left[\frac{J(J+1)-3<(\vec{J} \cdot \vec{j})^{2}>}{J(2 J-1)}\right]\right)
\end{aligned}
\end{aligned}
$$

Allows for: V - A, Scalar, Tensor Interactions
Left, Right-handed currents

Time-reversal violation
$a_{\beta \nu}, b, c, A_{\beta}, B_{\nu}, D$: values predicted by the Standard Model
Recent review: S. Severijins and M. Beck, Rev. Mod. Phys. 78991 (2006)
Measurements feasible using Atom traps and Radioactive Beams.

Limits on Scalar Boson Interaction

$$
\begin{aligned}
& d W= \overrightarrow{p_{o}} \cdot \overrightarrow{p_{\nu}} \\
&\left.d+\frac{m_{e}}{E_{\beta} E_{\nu}} a_{\beta \nu}+\frac{\vec{J}}{E_{\beta}} b+\frac{\overrightarrow{p_{\beta}}}{J} A_{\beta}+\frac{\overrightarrow{p_{\nu}}}{E_{\nu}} B_{\nu}+\frac{\overrightarrow{p_{\beta}} \times \overrightarrow{p_{\nu}}}{E_{\beta} E_{\nu}} D\right] \\
&\left.+c\left[\frac{\overrightarrow{p_{\beta}} \cdot \overrightarrow{p_{\nu}}}{3 E_{\beta} E_{\nu}}-\frac{\left(\overrightarrow{p_{\beta}} \cdot \vec{j}\right)\left(\overrightarrow{p_{\nu}} \cdot \vec{j}\right)}{E_{\beta} E_{\nu}}\right]\left[\frac{J(J+1)-3<(\vec{J} \cdot \vec{j})^{2}>}{J(2 J-1)}\right]\right)
\end{aligned}
$$

For pure Fermi $0^{+} \rightarrow 0^{+}$decay $\beta-\nu$ angular correlation:

$$
\begin{gathered}
P(\theta)=1+b \frac{\mathrm{~m}_{\beta}}{\mathrm{E}_{\beta}}+a_{\beta \nu} \frac{\mathrm{v}_{\beta}}{\mathrm{c}} \cos (\theta) \\
a_{\beta \nu}=1-4 \frac{g_{S}^{2}}{g_{V}^{2}}\left(\left|a_{L}^{S}\right|^{2}+\left|a_{R}^{S}\right|^{2}\right) \quad b= \pm \frac{g_{S}}{g_{V}} \frac{\operatorname{Re}\left(a_{L L} a_{R}^{S}\right)}{\left|a_{L L}\right|^{2}} \\
a_{L}^{S}=A_{L L}+A_{L R} \quad a_{R}^{S}=A_{R R}+A_{R L} \\
\mathbf{S M}: \mathbf{b}=\mathbf{0}, \mathbf{a}_{\beta \nu}=\mathbf{1 . 0} .
\end{gathered}
$$

$$
C_{S}+C_{S}^{\prime} \sim 0.001 \text { in MSSM, Profumo et al., PRD } 75075017
$$

Measurement of $\beta-\nu$ Angular Correlation

$$
\text { in }{ }^{38 m} K \xrightarrow{\beta^{+}}{ }^{38} A r
$$

$$
Q\left({ }_{19}^{38 \mathrm{~m}} \mathrm{~K}\right)=5.02234(12) \mathrm{MeV}
$$

TRIUMF

ISAC at TRIUMF

D. Ashery, The TRINAT trap program FUNTRAP12 workshop December 20126

TRINAT DOUBLE MOT TRAPPING SYSTEM

Collection chamber

- $95 \%{ }^{385 s} \mathrm{~K}^{+}\left(\mathrm{t}_{1 / 2}=7.64 \mathrm{~min}\right)+5 \%^{38 \mathrm{~m}} \mathrm{~K}^{+}\left(\mathrm{t}_{1 / 2}=0.924 \mathrm{~s}\right)$
- neutralization of ${ }^{38} \mathrm{~K}^{+}$
- vapor cell trap
- 10^{-8} Torr
- 0.1% of ${ }^{38 \mathrm{~m}} \mathrm{~K}$ trapped
- 75% of trapped ${ }^{38 \mathrm{~m}} \mathrm{~K}$ moved

Detection chamber

- $100 \%{ }^{38 \mathrm{~m}} \mathrm{~K}, \mathrm{t}_{1 / 2}=0.924 \mathrm{~s}$
- retrap from atomic beam
- $3 \cdot 10^{-10}$ Torr, $\mathrm{t}_{1 / 2}^{\text {trap }}=30 \mathrm{~s}$
- $\quad 0.75 \mathrm{~mm}$ FWHM trap size
- 2000 atoms in trap
- photoionization of ${ }^{38 \mathrm{~m}} \mathrm{~K}$

TRINAT DETECTION SYSTEM FOR ${ }^{38 m} K$ DECAY

- High recoil collection and detection efficiencies due to \boldsymbol{E}-field
- Coincident detection of e^{+}and recoils back-to-back
- Position information both from e^{+}and recoil detectors
- Possibility to measure \boldsymbol{p}_{e} and $\boldsymbol{p}_{\text {recoil }}$ and using them to determine \boldsymbol{p}_{ν}.
- Chamber geometry suppresses recoiling ion detection from decays on walls and electrostatic hoops

Exploiting over-determined kinematics

Results: A. Gorelov et al., PRL 94, 142501 (2005)

$$
P(\theta)=1+b \frac{\mathrm{~m}_{\beta}}{\mathrm{E}_{\beta}}+a_{\beta \nu} \frac{\mathrm{v}_{\beta}}{\mathrm{c}} \cos (\theta)
$$

For $|b|<0.04,\left\langle E_{\beta}\right\rangle=3.3 \mathrm{MeV}$
Define:
$\tilde{a}=\frac{a_{\beta \nu}}{1+b \frac{m_{\beta}}{\left\langle E_{\beta}\right\rangle}}$
$\tilde{a}=0.9981 \pm 0.0030_{-0.0037}^{+0.0032}$

In agreement with the Standard Model.

Summary of results for a

${ }^{32}$ Ar: E. G. Adelberger et al., Phys. Rev. Lett. 83, 1299(1999)
${ }^{38 m}$ K: A. Gorelov et al., PRL 94, 142501 (2005)
${ }^{21}$ Na: P.A. Vetter et al., Phys. Rev. C77, 035502 (2008)

Upgraded System for ${ }^{38 m} \mathbf{K}$ decay measurement

- Reduce all systematic and statistical errors:
- New, larger MCP detector and β telescope - near 100\% acceptance for ions. Improved low E_{β} detection for Fierz term measurement.
- Time and momentum focusing for better resolution and charge state separation.
- Higher beam intensity: $\mathbf{4 0} \mu A$ vs. $1 \mu A$ in previous experiment.
- New chamber design to accomodate all the above.
D. Ashery, The TRINAT trap program FUNTRAP12 workshop December 201212

RECOIL DETECTOR SPATIAL CALIBRATION

Calibration performed with precise mask (2 mmx 2 mm hole, 1 mm strip) and ${ }^{148} \mathrm{Gd}$ source. Evaluated resolution 0.25 mm .

Time Focussing: $p_{\text {recoil }}$ FROM 2% I.C. DECAY OF ${ }^{86 \mathrm{~m}}$ Rb

[^0]
Improved acceptance and time/charge-state resolution

Simulations for ${ }^{38 m} \mathbf{K}$ decay

D. Ashery, The TRINAT trap program FUNTRAP12 workshop December 201215

PRESENT FUTURE

Applied electric field		
E-field non-uniformity	0.0010	0.0003
E-field/trap size	0.0012	0.0004
Beta-detector response	0.0016	0.0008
Energy calibration	0.0013	0.0003
Line shape tail/total	0.0002	0.0004
511keV Compton summing	0.0006	0.0004
Recoil Detector efficiency		0.004
MCP incident recoil angle	0.0010	0.0003
MCP incident ion energy	0.0009	
Prompt peak	${ }_{-0.0004}^{+0.000}$	
Transverse trap position	${ }_{-0.00015}^{+0.000}$	0.0003
Electron shake-off	${ }_{-0.0034}^{+0.0030}$	0.0012
Total systematic error		

- Most errors determined by statistics-limited data evaluation.
- Further improvements: use all kinematic information.
- Extend analysis to lower $\boldsymbol{E}_{\boldsymbol{\beta}}$ to measure b.

Limits on Scalar Interaction

D. Ashery, The TRINAT trap program FUNTRAP12 workshop December 201211

Polarization Observables

$$
\begin{aligned}
& d W= \\
& \begin{aligned}
& d W_{o}(1+\frac{\overrightarrow{p_{\beta}} \cdot \overrightarrow{p_{\nu}}}{E_{\beta} E_{\nu}} a_{\beta \nu}+\frac{\Gamma m_{e}}{E_{\beta}} b+\frac{\vec{J}}{J} \cdot\left[\frac{\overrightarrow{p_{\beta}}}{E_{\beta}} A_{\beta}+\frac{\overrightarrow{p_{\nu}}}{E_{\nu}} B_{\nu}+\frac{\overrightarrow{p_{\beta}} \times \overrightarrow{p_{\nu}}}{E_{\beta} E_{\nu}} D\right] \\
&\left.+c\left[\frac{\overrightarrow{p_{\beta}} \cdot \overrightarrow{p_{\nu}}}{3 E_{\beta} E_{\nu}}-\frac{\left(\overrightarrow{p_{\beta}} \cdot \vec{j}\right)\left(\overrightarrow{p_{\nu}} \cdot \vec{j}\right)}{E_{\beta} E_{\nu}}\right]\left[\frac{J(J+1)-3<(\vec{J} \cdot \vec{j})^{2}>}{J(2 J-1)}\right]\right) \\
& \text { Asymmetry }=\frac{\sigma(\uparrow)-\sigma(\downarrow)}{\sigma(\uparrow)+\sigma(\downarrow)}
\end{aligned} .
\end{aligned}
$$

$\vec{J} \| \overrightarrow{P_{\beta}} \Longrightarrow$ measure $A_{\beta}(\beta$ singles or coin. with recoil)
$\vec{J} \perp \overrightarrow{P_{\beta}}, \quad \overrightarrow{P_{\nu}}=\overrightarrow{P_{R}}-\overrightarrow{P_{\beta}} \Longrightarrow d W \propto \frac{\vec{J}}{J} \cdot\left[B_{\nu} \overrightarrow{P_{R}}+D \frac{\left(\overrightarrow{P_{\beta}} \times \overrightarrow{P_{R}}\right)}{E_{\beta}}\right]$
Measure B_{ν} from Recoil Asymmetry in $\overrightarrow{P_{R}} \| \vec{J}$ plane
Measure D from Recoil Asymmetry in $\overrightarrow{P_{R}} \perp \vec{J}$ plane

Right-handed Currents

$$
\begin{aligned}
& \left|W_{L}>=\cos \zeta\right| W_{1}>-\sin \zeta \mid W_{2}> \\
& \left|W_{R}>=\sin \zeta\right| W_{1}>+\cos \zeta \mid W_{2}>
\end{aligned}
$$

Define: $x=\left(M_{L} / M_{R}\right)^{2}-\zeta$ and $y=\left(M_{L} / M_{R}\right)^{2}+\zeta$

$$
\begin{gathered}
\lambda \equiv g_{A} M_{G T} / g_{V} M_{F} \\
A_{\beta}=\frac{-2 \lambda}{1+\lambda^{2}}\left[\frac{\lambda\left(1-y^{2}\right)}{5\left(1+y^{2}\right)}-(1-x y) \sqrt{\frac{3\left(1+x^{2}\right)}{5\left(1+y^{2}\right)}}\right] \\
B_{\nu}=\frac{-2 \lambda}{1+\lambda^{2}}\left[\frac{\lambda\left(1-y^{2}\right)}{5\left(1+y^{2}\right)}+(1-x y) \sqrt{\frac{3\left(1+x^{2}\right)}{5\left(1+y^{2}\right)}}\right] \\
R_{\text {slow }} \equiv \frac{d W\left(\vec{J} \cdot \vec{p}_{\beta}=-1\right)}{d W\left(\vec{J} \cdot \vec{p}_{\beta}=+1\right)}=\frac{1-a-2 c / 3-(A+B)}{1-a-2 c / 3+(A+B)}=y^{2}
\end{gathered}
$$

The $\mathbf{R}_{\text {slow }}$ Concept

$$
{ }^{37} K \rightarrow{ }^{37} \mathrm{Ar} \beta \nu \quad 3 / 2^{+} \rightarrow 3 / 2^{+}
$$

Measurement of $\beta-\nu$ Angular Correlation in Polarized ${ }^{37} \mathrm{~K} \xrightarrow{\beta^{+}}{ }^{37} A r$
More precise determination of decay branching ratios underway in Texas A \& M University

Coefficients of $\beta-\nu$ Angular Correlation in Polarized ${ }^{37} \mathrm{~K} \xrightarrow{\beta^{+}}{ }^{37} \mathrm{Ar}$

Calculated with the Standard Model assuming

$$
\lambda \equiv g_{A} M_{G T} / g_{V} M_{F}=-0.5754 \pm 0.0018
$$

Maximal Parity Violation

observable	$a_{\beta \nu}$	A_{β}	B_{ν}	c
value	0.6683	-0.5702	-0.7692	0.1990
error 1	0.0013	0.0005	0.0013	0.0008

${ }^{1}$ Due to error in λ

$$
\mathrm{b}=\mathrm{D}=\mathrm{R}_{\text {slow }}=0
$$

Optical Pumping

[^1]
Determination of the Polarization

Measure B_{ν} from Recoil Asymmetry in $\hat{x}-\hat{z}$ plane Measure D from Recoil Asymmetry in $\hat{y}-\hat{z}$ plane

Upgraded Experimental System

- Reduce all systematic and statistical errors:
- New, larger MCP detector and β telescope - near 100\% acceptance for ions. Improved low E_{β} detection for Fierz term measurement.
- New polarization detectors with Si MSD and plastic scintillator. Position information and better resolution.
- Time and momentum focusing for better resolution and charge state separation.
- Shakeoff electron detection for background suppression.
- Better trapping/polarization cycle by using AC MOT.
- Higher beam intensity: $\mathbf{4 0} \mu A$ vs. $1 \mu A$ in previous experiment.
- New chamber design to accomodate all the above.

The principle of AC MOT

M. Harvey and A.J. Murray Phys. Rev. Lett. 101, 173201 (2008)

NEW DETECTION CHAMBER FOR ${ }^{37} \mathrm{~K}$

- Position sensitivity on all beta and recoil detectors
- Larger beta and recoil detectors will improve statistics
- AC MOT will speed up switching from MOT cycle to OP cycle
- Improvement of a weak magnetic field during OP will improve polarization
- Coincidences with shake off electron MCP will reduce background for competitive measurements of beta asymmetry

D. Ashery, The TRINAT trap program FUNTRAP12 workshop December 2012

JUST MEASURED

Limits on Right-Handed Currents

Tensor Interaction

The angular distribution of recoiling daughter nuclei of polarized β emitters, S.B. Treiman PR 110, 448 (1957):

$$
W\left(\theta_{r}\right) d\left(\cos \theta_{r}\right)=\left\{1+\frac{1}{3} c^{\prime} \chi_{2}-\mathrm{P}\left(A_{\beta}+B_{\nu}\right) \chi_{1} \cos \theta_{r}-c^{\prime} \chi_{2} \cos ^{2} \theta_{r}\right\} d\left(\cos \theta_{r}\right)
$$

χ_{1}, χ_{2} kinematical functions, $\quad c^{\prime}=c \frac{J(J+1)-3\left\langle\langle\vec{J}, \vec{j})^{2}\right\rangle}{J(2 J-1)}$.
For pure GT transitions and no Tensor Interaction: $A_{\beta}+B_{\nu}=0$

$$
5 / 8\left(A_{\beta}+B_{\nu}\right)=2 C_{T} C_{T}^{\prime}+\frac{m_{\beta}}{E_{\beta}}\left(C_{T}-C_{T}^{\prime}\right)
$$

And can be deduced from Asymmetry measurements:

$$
A_{\text {spin }}=\frac{W[\theta, P]-W[\theta,-P]}{W[\theta, P]+W[\theta,-P]}=\frac{\chi_{1} P\left(A_{\beta}+B_{\nu}\right) \cos \theta}{1+c^{\prime} \chi_{2}+c^{\prime} \chi_{2} \cos ^{2} \theta}
$$

Insensitive to Right-Handed currents; constrains Tensor Interaction

Using recoil momentum information enhances the sensitivity and allows separation of SM recoil-order corrections
(O. Aviv, MSc. Thesis, Tel Aviv University (2004)):
$A_{\text {spin }}\left(P_{R}\right)=\frac{\left(f_{4}\left(A_{\beta}+B_{\nu}\right)-f_{7} b\right) P \cos \theta}{f_{1}-f_{6} b-f_{2}\left(a_{\beta \nu}+c^{\prime} / 3\right)+c^{\prime}\left(f_{3}+f_{5} \cos ^{2} \theta\right)}$
$f_{i}\left(P_{R}\right)$: Calculated functions of recoil momentum

Use polarized ${ }^{80} \mathrm{Rb}, 1^{+} \rightarrow 0^{+}$pure GT tran-
 sition. $\quad \mathbf{P}_{\text {Recoil }}$ from TOF to Shakeoff e^{-} MCP
$\left(A_{\beta}+B_{\nu}\right)=0.015 \pm 0.029$ arXiv: 0811.0052 [nuclex],
J.R.A. Pitcairn et al., Phys. Rev. C79, 015501 (2009)

Experimental precision better by an order of magnitude, BUT:

Constraints on Tensor Interaction dominated by theoretical uncertainties in Recoil-Order corrections

SUMMARY

- Studies of β decay of trapped radioactive nuclei provide constraints on the Standard Model
- Next generation experiments will provide tighter constraints, complementary to measurements with HE accelerators

$$
\begin{aligned}
& \xi=\left|M_{F}\right|^{2}\left(\left|C_{S}\right|^{2}+\left|C_{V}\right|^{2}+\left|C_{S}^{\prime}\right|^{2}+\left|C_{V}^{\prime}\right|^{2}\right)+\left|M_{G T}\right|^{2}\left(\left|C_{T}\right|^{2}+\left|C_{A}\right|^{2}+\left|C_{T}^{\prime}\right|^{2}+\left|C_{A}^{\prime}\right|^{2}\right) \\
& a_{\beta \nu} \xi=\left|M_{F}\right|^{2}\left(-\left|C_{S}\right|^{2}+\left|C_{V}\right|^{2}-\left|C_{S}^{\prime}\right|^{2}+\left|C_{V}^{\prime}\right|^{2}\right)+\frac{\left|M_{G T}\right|^{2}}{3}\left(\left|C_{T}\right|^{2}-\left|C_{A}\right|^{2}+\left|C_{T}^{\prime}\right|^{2}-\left|C_{A}^{\prime}\right|^{2}\right) \\
& b \xi= \pm 2 \operatorname{Re}\left[\left|M_{F}\right|^{2}\left(C_{S} C_{V}^{*}+C_{S}^{\prime} C_{V}^{*}\right)+\left|M_{G T}\right|^{2}\left(C_{T} C_{A}^{*}+C_{T}^{\prime} C_{A}^{*}\right)\right] \\
& c \xi=\left|M_{G T}\right|^{2} \Lambda_{J^{\prime} J}\left(\left|C_{T}\right|^{2}-\left|C_{A}\right|^{2}+\left|C_{T}^{\prime}\right|^{2}-\left|C_{A}^{\prime}\right|^{2}\right) \\
& A_{\beta} \xi=2 \operatorname{Re}\left[\pm\left|M_{G T}\right|^{2} \lambda_{J^{\prime} J}\left(C_{T} C_{T}^{* *}-C_{A} C_{A}^{\prime *}\right)+\delta_{J^{\prime} J}\left|M_{G T}\right|\left|M_{F}\right| \sqrt{J /(J+1)}\left(C_{S} C_{T}^{* *}\right.\right. \\
& \left.\left.+C_{S}^{\prime} C_{T}^{*}-C_{V}^{*} C_{A}^{* *}-C_{V}^{\prime} C_{A}^{*}\right)\right] \\
& B_{\nu} \xi=2 \operatorname{Re}\left\{\left|M_{G T}\right|^{2} \lambda_{J^{\prime} J}\left[\frac{m_{e}}{E_{e}}\left(C_{T} C_{A}^{* *}+C_{T}^{\prime} C_{A}^{*}\right) \pm\left(C_{T} C_{T}^{* *}+C_{A} C_{A}^{* *}\right)\right]\right. \\
& -\delta_{J^{\prime} J}\left|M_{G T}\right|\left|M_{F}\right| \sqrt{J /(J+1)} \times\left[\left(C_{S} C_{T}^{* *}+C_{S}^{\prime} C_{T}^{*}+C_{V} C_{A}^{* *}+C_{V}^{\prime} C_{A}^{*}\right)\right. \\
& \left.\left. \pm \frac{m}{E_{e}}\left(C_{S} C_{A}^{* *}+C_{S}^{\prime} C_{A}^{*}+C_{V} C_{T}^{* *}+C_{V}^{\prime} C_{T}^{*}\right)\right]\right\} \\
& D \xi=2 \operatorname{Im}\left\{\delta_{J J^{\prime}}\left|M_{F}\right|\left|M_{G T}\right| \sqrt{\frac{J}{J+1}}\left(C_{S} C_{T}^{*}+C_{S}^{\prime} C_{T}^{\prime *}-C_{V} C_{A}^{*}-C_{V}^{\prime} C_{A}^{\prime *}\right)\right\} \\
& \lambda_{J^{\prime} J}=\left\{\begin{aligned}
1, & J \rightarrow J^{\prime}=J-1 \\
\frac{1}{J+1}, & J \rightarrow J^{\prime}=J \\
-\frac{J}{J+1}, & J \rightarrow J^{\prime}=J+1
\end{aligned}\right. \\
& \Lambda_{J^{\prime} J}=\left\{\begin{array}{cl}
1, & J \rightarrow J^{\prime}=J-1 \\
-\frac{2 J-1}{J+1}, & J \rightarrow J^{\prime}=J \\
\frac{J(2 J-1)}{(2 J+3)(J+1)}, & J \rightarrow J^{\prime}=J+1
\end{array}\right. \\
& C_{i} \text { : Interaction Amplitudes (complex) }
\end{aligned}
$$

$$
\begin{array}{ll}
C_{V}=g_{V}\left(a_{L L}+a_{L R}+a_{R R}+a_{R L}\right) & C_{V}^{\prime}=g_{V}\left(a_{L L}+a_{L R}-a_{R R}-a_{R L}\right) \\
C_{A}=g_{A}\left(a_{L L}-a_{L R}+a_{R R}-a_{R L}\right) & C_{A}^{\prime}=g_{A}\left(a_{L L}-a_{L R}-a_{R R}+a_{R L}\right) \\
C_{S}=g_{S}\left(A_{L L}+A_{L R}+A_{R R}+A_{R L}\right) & C_{S}^{\prime}=g_{S}\left(A_{L L}+A_{L R}-A_{R R}-A_{R L}\right) \\
C_{T}=2 g_{T}\left(\alpha_{L L}+\alpha_{R R}\right) & C_{T}^{\prime}=2 g_{T}\left(\alpha_{L L}-\alpha_{R R}\right)
\end{array}
$$

g_{i} : Hadronic Form Factors $\quad a_{i j}$: Chirality coupling constants $i: \nu \quad j$: quark

Standard Model: V - A, left handed

$$
\begin{aligned}
& g_{V}=1, g_{A}=-1.27 \text { (n decay) } \\
& a_{L L}=V_{u d} \frac{g^{2}}{8 M_{W}^{2}} \cong 8 \cdot 10^{-6} \mathrm{GeV} V^{-2} \\
& a_{i j}, A_{i, j}, \alpha_{i, j}=0 \quad, j \neq L, L \\
& a_{\beta \nu}=\frac{y^{2}-\frac{1}{3}}{y^{2}+1}, \quad y=\frac{C_{V} M_{F}}{C_{A} M_{G T}} \\
& b=0 \\
& c=\frac{-\Lambda_{J J^{\prime}}}{1+y^{2}} \\
& A_{\beta}=\frac{\mp \lambda_{J J^{\prime}}-2 \delta_{J J \prime^{\prime}} \sqrt{J /(J+1)}}{y^{2}+1} \\
& B_{\nu}=\frac{ \pm \lambda_{J J^{\prime}}-2 \delta_{J J J^{\prime}} y^{J J /(J+1)}}{y^{2}+1} \\
& D=0
\end{aligned}
$$

[^0]: D. Ashery, The TRINAT trap program FUNTRAP12 workshop December 2012

 14

[^1]: Searching for Right-Handed Currents in the β-decay of Laser-Cooled, Polarized 37 K
 TRIUMF AGM
 Dec. 8, 2004

